This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362817 #41 Aug 02 2023 14:34:08 %S A362817 4,6,4,4,10,4,4,12,4,4,14,4,6,4,8,8,4,4,18,4,4,8,8,4,12,4,22,4,4,22,4, %T A362817 4,22,4,8,8,4,8,8,4,4,26,4,10,4,8,8,4,8,8,4,28,4,4,30,4,4,30 %N A362817 Irregular triangle read by rows: T(n,k) (n>=1, k>=1) is the number of edges of the k-th polygon (or part), from left to right, of the symmetric representation of sigma(n). %C A362817 Row n is [4, 4] if and only if n is an odd prime. %C A362817 If the symmetric representation of sigma(n) has only one polygon (or part), or in other words, if n is a member of A174973 (also of the same sequence A238443) then row n has only a term: T(n,1) = 2 + 2*(A003056(n-1) + A003056(n)). Note that A174973 = A238443 also include all powers of 2 and all even perfect numbers. %e A362817 Triangle begins: %e A362817 4; %e A362817 6; %e A362817 4, 4; %e A362817 10; %e A362817 4, 4; %e A362817 12; %e A362817 4, 4; %e A362817 14; %e A362817 4, 6, 4; %e A362817 8, 8; %e A362817 4, 4; %e A362817 18; %e A362817 4, 4; %e A362817 8, 8; %e A362817 4, 12, 4; %e A362817 ... %e A362817 Illustration of row 9: %e A362817 4 %e A362817 _ _ _ _ _ %e A362817 |_ _ _ _ _| %e A362817 |_ _ 6 %e A362817 |_ | %e A362817 |_|_ _ %e A362817 | | %e A362817 | | %e A362817 | | 4 %e A362817 | | %e A362817 |_| %e A362817 . %e A362817 For n = 9 the symmetric representation of sigma(9) has three parts from left to right as follows: a rectangle, a concave hexagon and a rectangle. The number of edges of the polygons are 4, 6, 4 respectively, so the row 9 of the triangle is [4, 6, 4]. %Y A362817 Row lengths give A237271. %Y A362817 Row sums give A362818. %Y A362817 Cf. A000079, A000203, A000396, A003056, A065091, A174973, A196020, A235791, A236104, A237270, A237591, A237593, A238443, A244363, A245092, A262626, A274919, A348705. %K A362817 nonn,tabf,more %O A362817 1,1 %A A362817 _Omar E. Pol_, May 04 2023