cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362818 Total number of edges of all polygons (or parts) of the symmetric representation of sigma(n).

This page as a plain text file.
%I A362818 #29 Aug 02 2023 14:34:27
%S A362818 4,6,8,10,8,12,8,14,14,16,8,18,8,16,20,22,8,22,8,22,24,16,8,26,18,16,
%T A362818 24,28,8,30,8,30
%N A362818 Total number of edges of all polygons (or parts) of the symmetric representation of sigma(n).
%C A362818 a(n) = 8 if and only if n is an odd prime.
%C A362818 If the symmetric representation of sigma(n) has only one polygon (or part), or in other words, if n is a member of A174973 (also of the same sequence A238443) then a(n) = 2 + 2*(A003056(n-1) + A003056(n)). Note that A174973 = A238443 also include all powers of 2 and all even perfect numbers.
%e A362818 Illustration of a(9) = 14:
%e A362818          4
%e A362818      _ _ _ _ _
%e A362818     |_ _ _ _ _|
%e A362818               |_ _ 6
%e A362818               |_  |
%e A362818                 |_|_ _
%e A362818                     | |
%e A362818                     | |
%e A362818                     | |  4
%e A362818                     | |
%e A362818                     |_|
%e A362818 .
%e A362818 For n = 9 the symmetric representation of sigma(9) has three parts from right to left as follows: a rectangle, a concave hexagon and a rectangle. The number of edges of the polygons are 4, 6, 4 respectively, therefore the total number of edges is 4 + 6 + 4 = 14, so a(9) = 14.
%Y A362818 Row sums of A362817.
%Y A362818 Cf. A000079, A000203, A000396, A003056, A065091, A174973, A196020, A235791, A236104, A237270, A237271, A237591, A237593, A238443, A244363, A245092, A262626, A274919, A348705.
%K A362818 nonn,more
%O A362818 1,1
%A A362818 _Omar E. Pol_, May 04 2023