This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362826 #13 May 30 2023 14:10:38 %S A362826 1,1,1,1,1,1,1,1,2,1,1,1,4,3,1,1,1,8,8,5,1,1,1,16,21,21,7,1,1,1,32,56, %T A362826 84,39,11,1,1,1,64,153,331,206,92,15,1,1,1,128,428,1300,1087,717,170, %U A362826 22,1,1,1,256,1221,5111,5832,5512,1810,360,30,1 %N A362826 Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1. %C A362826 T(n,k) is also the number of nonisomorphic (k-1)-tuples of permutations of an n-set that pairwise commute. Isomorphism is up to permutation of the elements of the n-set. %H A362826 Andrew Howroyd, <a href="/A362826/b362826.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %H A362826 Tad White, <a href="http://arxiv.org/abs/1304.2830">Counting Free Abelian Actions</a>, arXiv preprint arXiv:1304.2830 [math.CO], 2013. %F A362826 Column k is the Euler transform of column k-1 of A160870. %F A362826 T(n,k) = A362827(n,k) / n!. %F A362826 G.f. of column k: exp(Sum_{i>=1} x^i*A160870(i,k)/i). %F A362826 G.f. of column k > 1: 1/(Product_{i>=1} (1 - x^i)^A160870(i,k-1)). %e A362826 Array begins: %e A362826 ======================================================= %e A362826 n/k| 1 2 3 4 5 6 7 8 ... %e A362826 ---+--------------------------------------------------- %e A362826 0 | 1 1 1 1 1 1 1 1 ... %e A362826 1 | 1 1 1 1 1 1 1 1 ... %e A362826 2 | 1 2 4 8 16 32 64 128 ... %e A362826 3 | 1 3 8 21 56 153 428 1221 ... %e A362826 4 | 1 5 21 84 331 1300 5111 20144 ... %e A362826 5 | 1 7 39 206 1087 5832 31949 178486 ... %e A362826 6 | 1 11 92 717 5512 42601 333012 2635637 ... %e A362826 7 | 1 15 170 1810 19252 208400 2303310 25936170 ... %e A362826 8 | 1 22 360 5462 81937 1241302 19107225 299002252 ... %e A362826 ... %o A362826 (PARI) %o A362826 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A362826 M(n, m=n)={my(v=vector(m), u=vector(n, n, n==1)); for(j=1, #v, v[j]=concat([1], EulerT(u))~; u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)} %o A362826 { my(A=M(8)); for(n=1, #A~, print(A[n, ])) } %Y A362826 Columns k=1..4 are A000012, A000041, A061256, A226313. %Y A362826 Cf. A160870, A362827, A362903. %K A362826 nonn,tabl %O A362826 0,9 %A A362826 _Andrew Howroyd_, May 09 2023