cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362845 Number of divisors of 7*n-2 of form 7*k+1.

This page as a plain text file.
%I A362845 #33 Jun 25 2023 10:39:33
%S A362845 1,1,1,1,1,2,1,1,1,1,2,1,1,2,1,2,1,1,1,1,2,2,1,1,1,3,1,1,1,2,2,1,1,1,
%T A362845 1,2,1,3,1,1,3,1,1,1,1,3,1,1,1,2,2,1,1,2,1,3,1,1,1,2,2,3,1,1,1,2,1,1,
%U A362845 1,2,3,1,1,2,1,2,1,2,2,1,2,2,1,1,1,5,1,1,1,1,2,1,1,2,1,2,1,3,1,1
%N A362845 Number of divisors of 7*n-2 of form 7*k+1.
%C A362845 Also number of divisors of 7*n-2 of form 7*k+5.
%F A362845 a(n) = A279061(7*n-2) = A363807(7*n-2).
%F A362845 G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(7*k-6)).
%F A362845 G.f.: Sum_{k>0} x^k/(1 - x^(7*k-2)).
%t A362845 a[n_] := DivisorSum[7*n - 2, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *)
%o A362845 (PARI) a(n) = sumdiv(7*n-2, d, d%7==1);
%Y A362845 Cf. A279061, A363807.
%K A362845 nonn
%O A362845 1,6
%A A362845 _Seiichi Manyama_, Jun 24 2023