A362854 The sum of the divisors of n that are both bi-unitary and exponential.
1, 2, 3, 4, 5, 6, 7, 10, 9, 10, 11, 12, 13, 14, 15, 18, 17, 18, 19, 20, 21, 22, 23, 30, 25, 26, 30, 28, 29, 30, 31, 34, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 54, 49, 50, 51, 52, 53, 60, 55, 70, 57, 58, 59, 60, 61, 62, 63, 70, 65, 66, 67, 68
Offset: 1
Examples
a(8) = 10 since 8 has 2 divisors that are both bi-unitary and exponential, 2 and 8, and 2 + 8 = 10.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := DivisorSum[e, p^# &] - If[OddQ[e], 0, p^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
s(p, e) = sumdiv(e, d, p^d*(2*d != e)); a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 1], f[i, 2]));}
Formula
Multiplicative with a(p^e) = Sum_{d|e} p^d if e is odd, and (Sum_{d|e} p^d) - p^(e/2) if e is even.
a(n) >= n, with equality if and only if n is cubefree (A004709).
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p)*(1 + Sum_{e>=1} Sum_{d|e, d != e/2}, p^(d-2*e))) = 0.5124353304539905... .
Comments