A362870 a(n) = sigma_29(n), the sum of the 29th powers of the divisors of n.
1, 536870913, 68630377364884, 288230376688582657, 186264514923095703126, 36845653355419807219092, 3219905755813179726837608, 154742505198902911050973185, 4710128697246313465298968573, 100000000186264514923632574038, 1586309297171491574414436704892
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Peter Luschny, Is this a new representation of (some) Bernoulli numbers?, Mathematics Stack Exchange.
- Index entries for sequences related to sigma(n).
Crossrefs
Programs
-
Maple
with(NumberTheory): seq(SumOfDivisors(k, 29), k = 1..20);
-
Mathematica
DivisorSigma[29, Range[20]]
-
PARI
for(n=1, 20, print1(direuler( p=2, n, 1 / (1 - X) /(1 - p^29*X))[n], ", "))
-
Python
from sympy import divisor_sigma def A362870(n): return divisor_sigma(n,29) # Chai Wah Wu, May 07 2023
Formula
G.f.: Sum_{k>=1} k^29 * x^k / (1-x^k).
Dirichlet g.f.: zeta(s-29)*zeta(s).
Sum_{k=1..n} a(k) ~ zeta(30) * n^30 / 30.
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1723168255201/171864 = Bernoulli(30)/60.
Multiplicative with a(p^e) = (p^(29*e+29)-1)/(p^29-1). - Amiram Eldar, Oct 29 2023
Comments