This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362880 #15 May 13 2023 01:56:41 %S A362880 1,0,15390,575160,7712820,57281580,296150580,1184012640,3944197800, %T A362880 11364334080,29395745478,69157229760,151652810580,311116423500, %U A362880 607158951120,1127694969072,2020055770530,3478103852940,5829999042420,9467119804680,15046034533560 %N A362880 Theta series of 20-dimensional lattice Kappa_20. %C A362880 Theta series is an element of the space of modular forms on Gamma_0(9) of weight 10 and dimension 11 over the integers. %D A362880 J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6. %H A362880 Andy Huchala, <a href="/A362880/b362880.txt">Table of n, a(n) for n = 0..20000</a> %H A362880 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/KAPPA20.html">Home page for this lattice</a>. %e A362880 G.f. = 1 + 15390*q^4 + 575160*q^6 + ... %o A362880 (Magma) %o A362880 prec := 40; %o A362880 ls := [4,2,4,0,-2,4,0,-2,0,4,0,0,-2,0,4,-2,-2,0,0,0,4,-2,-1,1,0,0,0,4,-2,-1,0,-1,1,2,2,4,-2,-2,0,1,1,2,2,2,4,-2,0,-2,0,1,1,0,0,0,4,1,1,0,0,0,-2,0,-1,-1,-2,4,-2,-1,0,0,0,1,1,1,1,1,-2,4,0,-1,1,1,0,-1,1,0,0,-1,1,-1,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,4,0,-1,0,0,1,1,0,1,1,-1,0,0,1,-1,4,0,0,1,0,-1,0,1,0,0,0,-1,0,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,1,4,1,0,-1,1,1,0,-1,-1,0,0,0,0,0,0,1,-1,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,0,1,0,4]; %o A362880 S := SymmetricMatrix(ls); %o A362880 L := LatticeWithGram(S); %o A362880 M := ThetaSeriesModularFormSpace(L); %o A362880 B := Basis(M, prec); %o A362880 coeffs := [1, 0, 15390, 575160, 7712820, 57281580, 296150580, 1184012640, 3944197800, 11364334080, 29395745478]; %o A362880 Coefficients(&+[coeffs[i]*B[i] :i in [1..11]]); %Y A362880 Cf. A029897, A047628, A362875, A362876, A362877, A362878, A362879. %K A362880 nonn %O A362880 0,3 %A A362880 _Andy Huchala_, May 08 2023