A362890 a(1)=a(2)=1. For n>2, a(n) is the number of times that a(n-1) and a(n-2) are adjacent in the sequence thus far (in any order).
1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 2, 1, 4, 1, 2, 5, 1, 1, 4, 3, 1, 3, 4, 2, 1, 6, 1, 2, 7, 1, 1, 5, 2, 2, 2, 3, 3, 1, 5, 3, 1, 6, 3, 1, 7, 2, 2, 4, 2, 3, 4, 3, 4, 5, 1, 4, 4, 1, 5, 5, 1, 6, 4, 1, 6, 5, 1, 7, 3, 1, 8, 1, 2, 8, 1, 3, 9, 1, 1, 6, 6, 1, 7, 4, 1
Offset: 1
Keywords
Examples
a(4)=2 because a(2) and a(3) = (1, 1) appear as a contiguous pair at 2 locations: at indices (1, 2) and (2, 3). a(7)=3 because a(5) and a(6) = (1, 2) appear as a contiguous pair at 3 locations: at indices (3, 4), (4, 5), (5, 6).
Links
- Neal Gersh Tolunsky, Table of n, a(n) for n = 1..10000
- Gavin Lupo, Image of the first 100000 terms.
Crossrefs
Cf. A362746.
Programs
-
Python
from itertools import islice from collections import Counter def k(c, d): return (c, d) if c <= d else (d, c) def agen(): # generator of terms an, anext, c = 1, 1, Counter({(1, 1)}) while True: yield an an, anext = anext, c[k(an, anext)] c[k(an, anext)] += 1 print(list(islice(agen(), 100))) # Michael S. Branicky, May 09 2023
Comments