This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362905 #18 Nov 19 2023 15:56:50 %S A362905 1,1,1,1,1,1,1,1,2,1,1,1,4,2,1,1,1,8,5,3,1,1,1,16,15,11,3,1,1,1,32,51, %T A362905 50,14,4,1,1,1,64,187,276,99,24,4,1,1,1,128,715,1768,969,232,30,5,1,1, %U A362905 1,256,2795,12496,11781,3504,429,45,5,1,1,1,512,11051,93600,162877,73440,10659,835,55,6,1 %N A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero. %C A362905 Equivalently, T(n,k) is the number multisets with n elements drawn from {0..2^k-1} such that the bitwise-xor of all the elements gives zero. %C A362905 T(n,k) is the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows. %C A362905 T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and complementation of columns. %H A362905 Andrew Howroyd, <a href="/A362905/b362905.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %F A362905 T(n,k) = binomial(2^k+n-1, n)/2^k for odd n; %F A362905 T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n. %F A362905 G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k. %e A362905 Array begins: %e A362905 ========================================= %e A362905 n/k| 0 1 2 3 4 5 6 ... %e A362905 ---+------------------------------------- %e A362905 0 | 1 1 1 1 1 1 1 ... %e A362905 1 | 1 1 1 1 1 1 1 ... %e A362905 2 | 1 2 4 8 16 32 64 ... %e A362905 3 | 1 2 5 15 51 187 715 ... %e A362905 4 | 1 3 11 50 276 1768 12496 ... %e A362905 5 | 1 3 14 99 969 11781 162877 ... %e A362905 6 | 1 4 24 232 3504 73440 1878976 ... %e A362905 7 | 1 4 30 429 10659 394383 18730855 ... %e A362905 ... %t A362905 A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* _Paolo Xausa_, Nov 19 2023 *) %o A362905 (PARI) T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k} %Y A362905 Columns k=0..4 are A000012, A004526(n+2), A053307, A362906, A363350. %Y A362905 Rows n=2..3 are A000079, A007581. %Y A362905 Main diagonal is A363351. %Y A362905 Cf. A054724, A340030, A340312, A363349. %K A362905 nonn,tabl %O A362905 0,9 %A A362905 _Andrew Howroyd_, May 27 2023