This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362906 #14 Nov 18 2023 18:08:24 %S A362906 1,1,8,15,50,99,232,429,835,1430,2480,3978,6372,9690,14640,21318, %T A362906 30789,43263,60280,82225,111254,148005,195416,254475,329095,420732, %U A362906 534496,672452,841160,1043460,1287648,1577532,1923465,2330445,2811240,3372291,4029178 %N A362906 Number of n element multisets of length 3 vectors over GF(2) that sum to zero. %C A362906 a(n) is the number of n X 3 binary matrices under row permutations and column complementations. %C A362906 See A362905 for other interpretations. %H A362906 Andrew Howroyd, <a href="/A362906/b362906.txt">Table of n, a(n) for n = 0..1000</a> %H A362906 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1). %F A362906 G.f.: (1 - 3*x + 6*x^2 - 3*x^3 + x^4)/((1 - x)^8*(1 + x)^4). %F A362906 a(n) = binomial(n+7, 7)/8 for odd n; %F A362906 a(n) = (binomial(n+7, 7) + 7*binomial(n/2+3, 3))/8 for even n. %e A362906 The a(1) = 1 multiset is {000}. %e A362906 The a(2) = 8 multisets are {000, 000}, {001, 001}, {010, 010}, {011, 011}, {100, 100}, {101, 101}, {110, 110}, {111, 111}. %e A362906 The a(3) = 15 multisets are {000, 000, 000}, {000, 001, 001}, {000, 010, 010}, {000, 011, 011}, {000, 100, 100}, {000, 101, 101}, {000, 110, 110}, {000, 111, 111}, {001, 010, 011}, {001, 100, 101}, {001, 110, 111}, {010, 100, 110}, {010, 101, 111}, {011, 100, 111}, {011, 101, 110}. %t A362906 A362906[n_]:=(Binomial[n+7,7]+If[EvenQ[n],7Binomial[n/2+3,3],0])/8;Array[A362906,50,0] (* _Paolo Xausa_, Nov 18 2023 *) %o A362906 (PARI) a(n) = (binomial(n+7,7) + if(n%2==0, 7*binomial(n/2+3, 3)))/8 %Y A362906 Column k=3 of A362905. %Y A362906 Cf. A006381. %K A362906 nonn,easy %O A362906 0,3 %A A362906 _Andrew Howroyd_, May 27 2023