A362919 a(n) is the right portion (reversed) of the base-phi representation of n in Knott's representation which uses the least number of 0's, the most 1's, and in which the right-hand portion is finite.
0, 0, 11, 1111, 1111, 1111, 1110, 111101, 111101, 111101, 111111, 111111, 111111, 111110, 111011, 111011, 111011, 111010, 11110101, 11110101, 11110101, 11110111, 11110111, 11110111, 11110110, 11111101, 11111101, 11111101, 11111111, 11111111, 11111111
Offset: 0
Examples
The representations of the numbers 0 though 30 are: 0 = 0.0 1 = 1.0 2 = 1.11 3 = 10.1111 4 = 11.1111 5 = 101.1111 6 = 111.0111 7 = 1010.101111 8 = 1011.101111 9 = 1101.101111 10 = 1110.111111 11 = 1111.111111 12 = 10101.111111 13 = 10111.011111 14 = 11010.110111 15 = 11011.110111 16 = 11101.110111 17 = 11111.010111 18 = 101010.10101111 19 = 101011.10101111 20 = 101101.10101111 21 = 101110.11101111 22 = 101111.11101111 23 = 110101.11101111 24 = 110111.01101111 25 = 111010.10111111 26 = 111011.10111111 27 = 111101.10111111 28 = 111110.11111111 29 = 111111.11111111 30 = 1010101.11111111
Links
- Ron Knott, Phigits and the Base Phi representation.
- Ron Knott, Phigits and the Base Phi representation [Local copy, pdf only]
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023. [Note that this document has been revised multiple times.]
Comments