This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362924 #26 Jul 09 2025 05:02:03 %S A362924 1,2,1,5,4,1,15,13,8,1,52,47,35,16,1,203,188,153,97,32,1,877,825,706, %T A362924 515,275,64,1,4140,3937,3479,2744,1785,793,128,1,21147,20270,18313, %U A362924 15177,11002,6347,2315,256,1,115975,111835,102678,88033,68303,45368,23073,6817,512,1,678570,657423,610989,536882,436297,316305,191866,85475,20195,1024,1 %N A362924 Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}. %C A362924 Also, the maximum number of solutions to an exact cover problem with n items, of which m are secondary. %D A362924 D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468. %H A362924 Paolo Xausa, <a href="/A362924/b362924.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of the triangle, flattened). %F A362924 T(n, 1) = Bell number (all set partitions) A000110(n); %F A362924 T(n, n) = 1 when m=n (the only possibility is a single block); %F A362924 T(n, n-1) = 2^{n-1} when m=n-1 (a single block or two blocks); %F A362924 T(n, 2) = A078468(2). %F A362924 In general, T(n, m) = Sum_{k=0..n-m} Stirling_2(n-m,k)*(k+1)^m. %e A362924 Triangle begins: %e A362924 [1], %e A362924 [2, 1], %e A362924 [5, 4, 1], %e A362924 [15, 13, 8, 1], %e A362924 [52, 47, 35, 16, 1], %e A362924 [203, 188, 153, 97, 32, 1], %e A362924 [877, 825, 706, 515, 275, 64, 1], %e A362924 [4140, 3937, 3479, 2744, 1785, 793, 128, 1], %e A362924 [21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1], %e A362924 [115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1], %e A362924 [678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1], %e A362924 ... %e A362924 For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are %e A362924 {12,3,4}, %e A362924 {13,2,4}, %e A362924 {14,2,3}, %e A362924 {23,1,4}, %e A362924 {24,1,3}, %e A362924 {34,1,2}, %e A362924 {1,2,3,4}, %e A362924 while %e A362924 {1234}, %e A362924 {123,4}, %e A362924 {124,3} %e A362924 {134,2} %e A362924 {234,1}, %e A362924 {12,34} %e A362924 {13. 24}. %e A362924 {14, 23} %e A362924 do not. %p A362924 with(combinat); %p A362924 T:=proc(n,m) local k; %p A362924 add(stirling2(n-m,k)*(k+1)^m, k=0..n-m); %p A362924 end; %t A362924 A362924[n_,m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}]; %t A362924 Table[A362924[n,m],{n,15},{m,n}] (* _Paolo Xausa_, Dec 02 2023 *) %Y A362924 See A113547 and A362925 for other versions of this triangle. %Y A362924 Row sums give A005493. %Y A362924 Cf. A000110, A008277, A078468, A143494. %K A362924 nonn,tabl %O A362924 1,2 %A A362924 _N. J. A. Sloane_, Aug 10 2023, based on an email from _Don Knuth_