This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362925 #36 Jul 09 2025 05:02:10 %S A362925 1,1,1,2,2,1,5,5,4,1,15,15,13,8,1,52,52,47,35,16,1,203,203,188,153,97, %T A362925 32,1,877,877,825,706,515,275,64,1,4140,4140,3937,3479,2744,1785,793, %U A362925 128,1,21147,21147,20270,18313,15177,11002,6347,2315,256,1,115975,115975,111835,102678,88033,68303,45368,23073,6817,512,1 %N A362925 Triangle read by rows: T(n,m), n >= 0, 0 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}. %C A362925 A variant of A113547 and A362924. See those entries for further information. %H A362925 Alois P. Heinz, <a href="/A362925/b362925.txt">Rows n = 0..140, flattened</a> %F A362925 Sum_{k=0..n} (k+1) * T(n,k) = A040027(n+1). - _Alois P. Heinz_, Dec 02 2023 %e A362925 Triangle begins: %e A362925 1; %e A362925 1, 1; %e A362925 2, 2, 1; %e A362925 5, 5, 4, 1; %e A362925 15, 15, 13, 8, 1; %e A362925 52, 52, 47, 35, 16, 1; %e A362925 203, 203, 188, 153, 97, 32, 1; %e A362925 877, 877, 825, 706, 515, 275, 64, 1; %e A362925 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1; %e A362925 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1; %e A362925 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1; %e A362925 ... %p A362925 T:= (n, k)-> add(Stirling2(n-k, j)*(j+1)^k, j=0..n-k): %p A362925 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Dec 01 2023 %t A362925 A362925[n_, m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}]; %t A362925 Table[A362925[n,m],{n,0,15},{m,0,n}] (* _Paolo Xausa_, Dec 04 2023 *) %Y A362925 Row sums are A000110(n+1). %Y A362925 Columns k=0+1,2-5 give A000110, A078468(n-2) (for n>=2), A383052(n-3) (for n>=3), A383053(n-4) (for n>=4), A383054(n-5) (for n>=5). %Y A362925 T(n+j,n) give (for j=0-2): A000012, A000079, A007689. %Y A362925 T(2n,n) gives A367820. %Y A362925 Cf. A040027, A113547, A362924. %K A362925 nonn,tabl %O A362925 0,4 %A A362925 _N. J. A. Sloane_, Aug 10 2023, based on an email from _Don Knuth_