This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362951 #47 Feb 20 2024 07:44:44 %S A362951 0,2,1,2,1,1,1,2,4,3,1,1,1,1,3,2,1,2,1,3,3,3,1,1,3,3,2,1,1,3,1,2,4,3, %T A362951 5,2,1,3,6,3,1,3,1,3,4,3,1,1,4,3,3,3,1,2,5,1,4,3,1,3,1,1,4,2,4,4,1,3, %U A362951 4,5,1,2,1,5,4,3,4,4,1,3,5,5,1,3,3,5,6 %N A362951 a(n) is the Hamming distance between the binary expansions of n and phi(n) where phi is the Euler totient function (A000010). %C A362951 a(2^k) = 2 for k >= 1. %C A362951 a(p) = 1 for each odd prime p because phi(p) = p-1 and (p-1 xor p) = 1. %H A362951 Paolo Xausa, <a href="/A362951/b362951.txt">Table of n, a(n) for n = 1..10000</a> %F A362951 a(n) = A101080(n,A000010(n)). %F A362951 a(n) = A000120(A169814(n)). %t A362951 A362951[n_] := DigitCount[BitXor[n, EulerPhi[n]], 2, 1]; %t A362951 Array[A362951, 100] (* _Paolo Xausa_, Feb 20 2024 *) %o A362951 (Python) %o A362951 from gmpy2 import mpz, hamdist %o A362951 from sympy import totient %o A362951 a = lambda n: hamdist(mpz(n), mpz(totient(n))) %o A362951 print([a(n) for n in range(1, 87)]) %o A362951 (Python) %o A362951 from sympy import totient %o A362951 def A362951(n): return (n^totient(n)).bit_count() # _Chai Wah Wu_, Jul 07 2023 %Y A362951 Cf. A000010, A000120, A065091, A101080, A169814. %K A362951 nonn,base,less %O A362951 1,2 %A A362951 _DarĂo Clavijo_, Jul 05 2023