This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362965 #34 Nov 02 2024 09:11:26 %S A362965 1,2,2,3,4,4,4,5,6,6,7,8,9,9,9,10,11,11,12,13,14,15,15,16,17,18,18,19, %T A362965 20,21,22,22,23,24,25,26,27,28,29,30,30,30,31,31,32,33,34,35,36,37,38, %U A362965 39,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,53,54,54,55,56,57,58,59,60 %N A362965 Number of primes <= the n-th prime power. %C A362965 Also, number of distinct primes among the first n prime powers (cf. A246655). %H A362965 Paolo Xausa, <a href="/A362965/b362965.txt">Table of n, a(n) for n = 1..10000</a> %F A362965 a(n) = A000720(A246655(n)). %e A362965 The 4th prime, 7, is followed by prime powers 8 and 9 before the next prime (11), accounting for three consecutive 4s in the sequence (at indices n = 5..7). Similarly, the three 9s (at n = 13..15) show that the 9th prime (23) is followed by two prime powers (25, 27) before the next prime (29). This occurs again at n = 40..42 (a(n) = 30), 358..360 (a(n) = 327) and 3588..3590 (a(n) = 3512). - _M. F. Hasler_, Oct 31 2024 %t A362965 A362965list[upto_]:=PrimePi[Select[Range[upto],PrimePowerQ]];A362965list[500] (* _Paolo Xausa_, Jun 29 2023 *) %o A362965 (PARI) apply(primepi, [p| p <- [1..300], isprimepower(p)]) \\ _Michel Marcus_, Jun 04 2023 %o A362965 (Python) %o A362965 from sympy import primepi, integer_nthroot %o A362965 def A362965(n): %o A362965 def bisection(f,kmin=0,kmax=1): %o A362965 while f(kmax) > kmax: kmax <<= 1 %o A362965 while kmax-kmin > 1: %o A362965 kmid = kmax+kmin>>1 %o A362965 if f(kmid) <= kmid: %o A362965 kmax = kmid %o A362965 else: %o A362965 kmin = kmid %o A362965 return kmax %o A362965 def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A362965 return int(primepi(bisection(f,n,n))) # _Chai Wah Wu_, Oct 28 2024 %Y A362965 Cf. A000961, A000720, A246655, A366833 (run lengths). %K A362965 nonn %O A362965 1,2 %A A362965 _Max Alekseyev_, Jun 03 2023