This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362973 #35 Jan 01 2024 11:56:28 %S A362973 1,2,7,20,51,129,307,713,1645,3721,8348,18589,41136,90619,198767, %T A362973 434572,947753,2062437,4480253,9718457,21055958,45575049,98566055, %U A362973 213028539,460160083,993533517,2144335391,4626664451,9980028172,21523027285,46408635232,100053270534 %N A362973 The number of cubefull numbers (A036966) not exceeding 10^n. %C A362973 The number of cubefull numbers not exceeding x is N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)), where c_0 (A362974), c_1 (A362975) and c_2 (A362976) are constants (Bateman and Grosswald, 1958; Finch, 2003). %C A362973 The digits of a(3k) converge to A362974 as k -> oo. - _Chai Wah Wu_, May 13 2023 %D A362973 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115. %H A362973 Chai Wah Wu, <a href="/A362973/b362973.txt">Table of n, a(n) for n = 0..36</a> %H A362973 Paul T. Bateman and Emil Grosswald, <a href="https://doi.org/10.1215/ijm/1255380836">On a theorem of Erdős and Szekeres</a>, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98. %H A362973 A. Ivić and P. Shiu, <a href="https://doi.org/10.1215/ijm/1256046597">The distribution of powerful integers</a>, Illinois Journal of Mathematics, Vol. 26, No. 4 (1982), pp. 576-590. %H A362973 Ekkehard Krätzel, <a href="https://doi.org/10.1007/BF01585911">On the distribution of square-full and cube-full numbers</a>, Monatshefte für Mathematik, Vol. 120, No. 2 (1995), pp. 105-119. %H A362973 P. Shiu, <a href="https://doi.org/10.1017/S0017089500008351">The distribution of cube-full numbers</a>, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295. %H A362973 P. Shiu, <a href="https://doi.org/10.1017/S0305004100070705">Cube-full numbers in short intervals</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5. %e A362973 There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2. %t A362973 a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0] %o A362973 (Python) %o A362973 from math import gcd %o A362973 from sympy import factorint, integer_nthroot %o A362973 def A362973(n): %o A362973 m, c = 10**n, 0 %o A362973 for x in range(1,integer_nthroot(m,5)[0]+1): %o A362973 if all(d<=1 for d in factorint(x).values()): %o A362973 for y in range(1,integer_nthroot(z:=m//x**5,4)[0]+1): %o A362973 if gcd(x,y)==1 and all(d<=1 for d in factorint(y).values()): %o A362973 c += integer_nthroot(z//y**4,3)[0] %o A362973 return c # _Chai Wah Wu_, May 11-13 2023 %Y A362973 Cf. A036966, A362974, A362975, A362976. %Y A362973 Similar sequences: A070428, A118896. %K A362973 nonn %O A362973 0,2 %A A362973 _Amiram Eldar_, May 11 2023 %E A362973 a(23)-a(31) from _Chai Wah Wu_, May 11 2023