cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362974 Decimal expansion of Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)).

Original entry on oeis.org

4, 6, 5, 9, 2, 6, 6, 1, 2, 2, 5, 0, 0, 6, 5, 6, 9, 4, 1, 2, 7, 7, 4, 3, 1, 1, 0, 8, 9, 1, 3, 6, 2, 5, 8, 6, 2, 1, 3, 0, 5, 4, 3, 3, 6, 7, 2, 8, 3, 2, 5, 6, 5, 3, 8, 4, 7, 5, 7, 6, 9, 2, 4, 0, 1, 5, 3, 0, 3, 4, 1, 8, 0, 8, 6, 5, 7, 3, 5, 2, 3, 8, 7, 2, 1, 8, 0, 7, 7, 5, 8, 9, 0, 2, 6, 8, 4, 6, 2, 3, 4, 9, 0, 9, 7
Offset: 1

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The coefficient c_0 of the leading term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).

Examples

			4.65926612250065694127743110891362586213054336728325...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Cf. A036966, A090699 (analogous constant for powerful numbers), A244000, A337736, A362973, A362975 (c_1), A362976 (c_2).
Cf. A051904.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 0, 0, -1, -1}, {0, 0, 0, 4, 5}, m]; RealDigits[(1 + 1/2^(4/3) + 1/2^(5/3)) * (1 + 1/3^(4/3) + 1/3^(5/3)) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat(1 + 1/p^4 + 1/p^5, 1/3)

Formula

Equals 1 + lim_{m->oo} (1/m) Sum_{k=1..m} A337736(k).