A362974 Decimal expansion of Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)).
4, 6, 5, 9, 2, 6, 6, 1, 2, 2, 5, 0, 0, 6, 5, 6, 9, 4, 1, 2, 7, 7, 4, 3, 1, 1, 0, 8, 9, 1, 3, 6, 2, 5, 8, 6, 2, 1, 3, 0, 5, 4, 3, 3, 6, 7, 2, 8, 3, 2, 5, 6, 5, 3, 8, 4, 7, 5, 7, 6, 9, 2, 4, 0, 1, 5, 3, 0, 3, 4, 1, 8, 0, 8, 6, 5, 7, 3, 5, 2, 3, 8, 7, 2, 1, 8, 0, 7, 7, 5, 8, 9, 0, 2, 6, 8, 4, 6, 2, 3, 4, 9, 0, 9, 7
Offset: 1
Examples
4.65926612250065694127743110891362586213054336728325...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
Links
- Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
- P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
- P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 0, 0, -1, -1}, {0, 0, 0, 4, 5}, m]; RealDigits[(1 + 1/2^(4/3) + 1/2^(5/3)) * (1 + 1/3^(4/3) + 1/3^(5/3)) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
-
PARI
prodeulerrat(1 + 1/p^4 + 1/p^5, 1/3)
Formula
Equals 1 + lim_{m->oo} (1/m) Sum_{k=1..m} A337736(k).
Comments