A362980 Numbers whose multiset of prime factors (with multiplicity) has different median from maximum.
6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110
Offset: 1
Keywords
Examples
The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is not in the sequence. The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is in the sequence. The terms together with their prime indices begin: 6: {1,2} 36: {1,1,2,2} 60: {1,1,2,3} 10: {1,3} 38: {1,8} 62: {1,11} 12: {1,1,2} 39: {2,6} 63: {2,2,4} 14: {1,4} 40: {1,1,1,3} 65: {3,6} 15: {2,3} 42: {1,2,4} 66: {1,2,5} 20: {1,1,3} 44: {1,1,5} 68: {1,1,7} 21: {2,4} 45: {2,2,3} 69: {2,9} 22: {1,5} 46: {1,9} 70: {1,3,4} 24: {1,1,1,2} 48: {1,1,1,1,2} 72: {1,1,1,2,2} 26: {1,6} 51: {2,7} 74: {1,12} 28: {1,1,4} 52: {1,1,6} 76: {1,1,8} 30: {1,2,3} 55: {3,5} 77: {4,5} 33: {2,5} 56: {1,1,1,4} 78: {1,2,6} 34: {1,7} 57: {2,8} 80: {1,1,1,1,3} 35: {3,4} 58: {1,10} 82: {1,13}
Crossrefs
Partitions of this type are counted by A237821.
Programs
-
Mathematica
Select[Range[100],(y=Flatten[Apply[ConstantArray,FactorInteger[#],{1}]];Max@@y!=Median[y])&]
Comments