This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362981 #6 May 14 2023 09:39:47 %S A362981 1,2,3,4,5,6,7,8,9,11,12,13,15,16,17,18,19,21,23,24,25,27,29,31,32,35, %T A362981 36,37,41,43,45,47,48,49,53,54,55,59,61,63,64,65,67,71,72,73,75,77,79, %U A362981 81,83,89,91,96,97,101,103,105,107,108,109,113,119,121,125 %N A362981 Heinz numbers of integer partitions such that 2*(least part) >= greatest part. %C A362981 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A362981 By conjugation, also Heinz numbers of partitions whose greatest part appears at a middle position, namely k/2, (k+1)/2, or (k+2)/2, where k is the number of parts. These partitions have ranks A362622. %e A362981 The terms together with their prime indices begin: %e A362981 1: {} 16: {1,1,1,1} 36: {1,1,2,2} %e A362981 2: {1} 17: {7} 37: {12} %e A362981 3: {2} 18: {1,2,2} 41: {13} %e A362981 4: {1,1} 19: {8} 43: {14} %e A362981 5: {3} 21: {2,4} 45: {2,2,3} %e A362981 6: {1,2} 23: {9} 47: {15} %e A362981 7: {4} 24: {1,1,1,2} 48: {1,1,1,1,2} %e A362981 8: {1,1,1} 25: {3,3} 49: {4,4} %e A362981 9: {2,2} 27: {2,2,2} 53: {16} %e A362981 11: {5} 29: {10} 54: {1,2,2,2} %e A362981 12: {1,1,2} 31: {11} 55: {3,5} %e A362981 13: {6} 32: {1,1,1,1,1} 59: {17} %e A362981 15: {2,3} 35: {3,4} 61: {18} %t A362981 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A362981 Select[Range[100],2*Min@@prix[#]>=Max@@prix[#]&] %Y A362981 For prime factors instead of indices we have A081306. %Y A362981 Prime indices are listed by A112798, length A001222, sum A056239. %Y A362981 The complement is A362982, counted by A237820. %Y A362981 Partitions of this type are counted by A237824. %Y A362981 Cf. A027746, A053263, A171979, A237821, A327473, A327476, A362616, A362619, A362621, A362622. %K A362981 nonn %O A362981 1,2 %A A362981 _Gus Wiseman_, May 14 2023