cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362982 Heinz numbers of partitions such that 2*(least part) < greatest part.

This page as a plain text file.
%I A362982 #5 May 14 2023 09:39:43
%S A362982 10,14,20,22,26,28,30,33,34,38,39,40,42,44,46,50,51,52,56,57,58,60,62,
%T A362982 66,68,69,70,74,76,78,80,82,84,85,86,87,88,90,92,93,94,95,98,99,100,
%U A362982 102,104,106,110,111,112,114,115,116,117,118,120,122,123,124,126
%N A362982 Heinz numbers of partitions such that 2*(least part) < greatest part.
%C A362982 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A362982 The terms together with their prime indices begin:
%e A362982     10: {1,3}        44: {1,1,5}      70: {1,3,4}
%e A362982     14: {1,4}        46: {1,9}        74: {1,12}
%e A362982     20: {1,1,3}      50: {1,3,3}      76: {1,1,8}
%e A362982     22: {1,5}        51: {2,7}        78: {1,2,6}
%e A362982     26: {1,6}        52: {1,1,6}      80: {1,1,1,1,3}
%e A362982     28: {1,1,4}      56: {1,1,1,4}    82: {1,13}
%e A362982     30: {1,2,3}      57: {2,8}        84: {1,1,2,4}
%e A362982     33: {2,5}        58: {1,10}       85: {3,7}
%e A362982     34: {1,7}        60: {1,1,2,3}    86: {1,14}
%e A362982     38: {1,8}        62: {1,11}       87: {2,10}
%e A362982     39: {2,6}        66: {1,2,5}      88: {1,1,1,5}
%e A362982     40: {1,1,1,3}    68: {1,1,7}      90: {1,2,2,3}
%e A362982     42: {1,2,4}      69: {2,9}        92: {1,1,9}
%t A362982 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A362982 Select[Range[100],2*Min@@prix[#]<Max@@prix[#]&]
%Y A362982 For prime factors instead of indices we have A069900, complement A081306.
%Y A362982 Prime indices are listed by A112798, length A001222, sum A056239.
%Y A362982 Partitions of this type are counted by A237820.
%Y A362982 The complement is A362981, counted by A237824.
%Y A362982 Cf. A027746, A053263, A171979, A237821, A327473, A327476, A362616, A362619, A362621, A362622.
%K A362982 nonn
%O A362982 1,1
%A A362982 _Gus Wiseman_, May 14 2023