cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362984 Decimal expansion of the asymptotic mean of the abundancy index of the powerful numbers (A001694).

This page as a plain text file.
%I A362984 #7 May 12 2023 04:22:34
%S A362984 2,1,4,9,6,8,6,9,0,3,0,1,5,2,6,7,6,5,1,2,8,2,1,9,0,4,2,1,0,5,1,0,9,4,
%T A362984 1,6,1,4,5,9,8,7,6,5,3,2,7,5,1,0,0,9,9,9,8,7,3,2,7,3,3,4,3,7,8,9,7,6,
%U A362984 2,7,1,7,9,4,0,3,6,4,2,3,6,5,7,4,2,7,4,2,3,7,7,1,7,0,2,4,2,2,8,9,7,3,8,6,2
%N A362984 Decimal expansion of the asymptotic mean of the abundancy index of the powerful numbers (A001694).
%C A362984 The abundancy index of a positive integer k is A000203(k)/k = A017665(k)/A017666(k).
%C A362984 The asymptotic mean of the abundancy index over all the positive integers is lim_{m->oo} (1/m) * Sum_{k=1..m} A000203(k)/k = Pi^2/6 = zeta(2) = 1.644934... (A013661).
%H A362984 Rafael Jakimczuk and Matilde Lalín, <a href="https://doi.org/10.7546/nntdm.2022.28.4.617-634">Asymptotics of sums of divisor functions over sequences with restricted factorization structure</a>, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (6).
%F A362984 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A180114(k)/A001694(k).
%F A362984 Equals Product_{p prime} (p^4 + p^2 + p^(3/2) - 1)/(p^4 - p) = Product_{p prime} (1 + (p^2 + p^(3/2) + p - 1)/(p^4 - p)) (Jakimczuk and Lalín, 2022).
%e A362984 2.14968690301526765128219042105109416145987653275100999873...
%t A362984 $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -3, 4, -6, 7, -7, 7, -6, 5, -3, 2, -1}, {0, 0, 0, 4, 5, 6, 0, -12, -9, -5, 0, 22}, m]; RealDigits[(2^4 + 2^2 + 2^(3/2) - 1)/(2^4 - 2)*(3^4 + 3^2 + 3^(3/2) - 1)/(3^4 - 3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
%o A362984 (PARI) prodeulerrat((p^8 + p^4 + p^3 - 1)/(p^8 - p^2), 1/2)
%Y A362984 Cf. A000203, A001694, A017665, A017666, A180114.
%Y A362984 Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A240976 (squares), A245058 (even), A306633 (squarefree), A362985 (cubefull).
%K A362984 nonn,cons
%O A362984 1,1
%A A362984 _Amiram Eldar_, May 12 2023