cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362985 Decimal expansion of the asymptotic mean of the abundancy index of the cubefull numbers (A036966).

This page as a plain text file.
%I A362985 #5 May 12 2023 04:26:21
%S A362985 2,4,8,2,1,7,9,1,9,6,4,2,2,3,5,9,5,2,5,4,6,1,6,7,6,4,3,6,7,4,6,8,7,6,
%T A362985 9,8,5,3,6,3,6,8,9,4,0,9,7,1,9,3,0,4,6,8,3,5,4,3,6,3,9,3,2,8,1,4,4,4,
%U A362985 2,3,3,8,8,5,7,6,7,5,0,4,6,3,4,1,1,5,0,7,3,1,0,3,9,8,0,4,4,7,4,0,3,7,3,1,0
%N A362985 Decimal expansion of the asymptotic mean of the abundancy index of the cubefull numbers (A036966).
%H A362985 Rafael Jakimczuk and Matilde LalĂ­n, <a href="https://doi.org/10.7546/nntdm.2022.28.4.617-634">Asymptotics of sums of divisor functions over sequences with restricted factorization structure</a>, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (6).
%F A362985 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A362986(k)/A036966(k).
%F A362985 Equals zeta(4/3) * Product_{p prime} ((p^5 + p^(10/3) + p^3 + p^(8/3) - 1)/(p^(10/3) * (p^(5/3) + p^(1/3) + 1))).
%e A362985 2.48217919642235952546167643674687698536368940971930468354...
%t A362985 $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -1, -2, 3, -2, -1, 3, -2, -2, 3, -1, -2, 3, -1, -1, 1}, {0, 0, 0, -4, 0, 6, 7, 4, 9, 0, -11, -22, -26, -21, -15, 20}, m]; RealDigits[((2^5 + 2^(10/3) + 2^3 + 2^(8/3) - 1)/(2^(10/3)*(2^(5/3) + 2^(1/3) + 1)))*((3^5 + 3^(10/3) + 3^3 + 3^(8/3) - 1)/(3^(10/3)*(3^(5/3) + 3^(1/3) + 1))) * Zeta[4/3] * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
%o A362985 (PARI) zeta(4/3) * prodeulerrat((p^15 + p^10 + p^9 + p^8 - 1)/(p^10 * (p^5 + p + 1)), 1/3)
%Y A362985 Cf. A000203, A036966, A017665, A017666, A362986.
%Y A362985 Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A245058 (even), A240976 (squares), A306633 (squarefree), A362984 (powerful).
%K A362985 nonn,cons
%O A362985 1,1
%A A362985 _Amiram Eldar_, May 12 2023