cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362986 a(n) = A000203(A036966(n)), the sum of divisors of the n-th cubefull number A036966(n).

Original entry on oeis.org

1, 15, 31, 40, 63, 127, 121, 156, 255, 600, 364, 511, 400, 1240, 1023, 781, 1815, 1093, 2520, 2340, 2047, 3751, 1464, 5080, 5460, 4836, 4095, 3280, 2380, 2801, 7623, 6000, 3906, 6240, 10200, 11284, 9828, 8191, 5220, 11715, 15367, 12400, 16395, 9841, 7240, 20440
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A362986_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e>2 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A362986_list = list(islice(A362986_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

Sum_{A036966(k) < x} a(k) = c * x^(4/3) + O(x^(113/96 + eps)), where c = A362985 * A362974 / 4 = 2.8912833599... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^4, where c = A362985 / (4 * A362974^3) = 0.006135085083... .