A362986 a(n) = A000203(A036966(n)), the sum of divisors of the n-th cubefull number A036966(n).
1, 15, 31, 40, 63, 127, 121, 156, 255, 600, 364, 511, 400, 1240, 1023, 781, 1815, 1093, 2520, 2340, 2047, 3751, 1464, 5080, 5460, 4836, 4095, 3280, 2380, 2801, 7623, 6000, 3906, 6240, 10200, 11284, 9828, 8191, 5220, 11715, 15367, 12400, 16395, 9841, 7240, 20440
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk and Matilde Lalín, Asymptotics of sums of divisor functions over sequences with restricted factorization structure, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (7).
Programs
-
Mathematica
DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
-
PARI
lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
-
Python
from itertools import count, islice from math import prod from sympy import factorint def A362986_gen(): # generator of terms for n in count(1): f = factorint(n) if all(e>2 for e in f.values()): yield prod((p**(e+1)-1)//(p-1) for p,e in f.items()) A362986_list = list(islice(A362986_gen(),20)) # Chai Wah Wu, May 21 2023