This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362996 #13 May 20 2023 08:22:24 %S A362996 1,3,1,11,14,3,25,46,117,16,137,652,3699,1344,125,49,568,19197,41728, %T A362996 19375,1296,363,9872,621837,2397184,2084375,334368,16807,761,23664, %U A362996 5338467,17115136,99109375,7150032,6705993,262144 %N A362996 Triangle read by rows. T(n, k) = numerator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1). %F A362996 T(n, k) = A362995(n, k) * A362997(n, k) / lcm(1, 2, ..., n+1). %e A362996 The triangle T(n, k) begins: %e A362996 [0] 1; %e A362996 [1] 3, 1; %e A362996 [2] 11, 14, 3; %e A362996 [3] 25, 46, 117, 16; %e A362996 [4] 137, 652, 3699, 1344, 125; %e A362996 [5] 49, 568, 19197, 41728, 19375, 1296; %e A362996 [6] 363, 9872, 621837, 2397184, 2084375, 334368, 16807; %e A362996 [7] 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144; %e A362996 . %e A362996 The first few polynomials are: %e A362996 [0] 1 %e A362996 [1] x + 3/2 %e A362996 [2] 3*x^2 + (14/3)*x + 11/6 %e A362996 [3] 16*x^3 + (117/4)*x^2 + (46/3)*x + 25/12 %e A362996 [4] 125*x^4 + (1344/5)*x^3 + (3699/20)*x^2 + (652/15)*x + 137/60 %e A362996 [5] 1296*x^5 + (19375/6)*x^4 + (41728/15)*x^3 + (19197/20)*x^2 + (568/5)*x + 49/20 %o A362996 (SageMath) %o A362996 def R(n, k, x): %o A362996 return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n %o A362996 for j in (0..u)) for u in (0..k)) %o A362996 def A362996row(n: int) -> list[int]: %o A362996 return [r.numerator() for r in R(n, n, x).list()] %o A362996 for n in (0..7): print(A362996row(n)) %Y A362996 Cf. A362997 (denominator), A001008 (column 0), A000272 (main diagonal), A362995. %K A362996 nonn,tabl,frac %O A362996 0,2 %A A362996 _Peter Luschny_, May 13 2023