This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362997 #13 May 20 2023 08:22:19 %S A362997 1,2,1,6,3,1,12,3,4,1,60,15,20,5,1,20,5,20,15,6,1,140,35,140,105,42,7, %T A362997 1,280,35,280,105,168,7,8,1,2520,315,280,315,504,7,72,9,1,2520,315, %U A362997 280,315,504,35,360,45,10,1,27720,3465,3080,3465,5544,385,3960,495,110,11,1 %N A362997 Triangle read by rows. T(n, k) = denominator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1). %F A362997 T(n, k) = lcm(1, 2, ..., n+1) * A362996(n, k) / A362995(n, k). %e A362997 Triangle T(n, k) starts: %e A362997 [0] 1; %e A362997 [1] 2, 1; %e A362997 [2] 6, 3, 1; %e A362997 [3] 12, 3, 4, 1; %e A362997 [4] 60, 15, 20, 5, 1; %e A362997 [5] 20, 5, 20, 15, 6, 1; %e A362997 [6] 140, 35, 140, 105, 42, 7, 1; %e A362997 [7] 280, 35, 280, 105, 168, 7, 8, 1; %e A362997 [8] 2520, 315, 280, 315, 504, 7, 72, 9, 1; %e A362997 [9] 2520, 315, 280, 315, 504, 35, 360, 45, 10, 1; %o A362997 (SageMath) %o A362997 def R(n, k, x): %o A362997 return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n %o A362997 for j in (0..u)) for u in (0..k)) %o A362997 def A362997row(n: int) -> list[int]: %o A362997 return [r.denominator() for r in R(n, n, x).list()] %o A362997 for n in (0..9): print(A362997row(n)) %Y A362997 Cf. A362996 (numerator), A002805 (column 0), A362995. %K A362997 nonn,tabl,frac %O A362997 0,2 %A A362997 _Peter Luschny_, May 13 2023