cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362998 a(n) = Sum_{k=0..2*n} R(2*n, k, 1) where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

This page as a plain text file.
%I A362998 #5 May 12 2023 15:57:48
%S A362998 1,14,867,191476,92323925,78056422494,102352057350319,
%T A362998 192403045957195112,490874140662802917417,1632516441577827373044370,
%U A362998 6861835036233587237791174211,35570322051950868085847089286364,222935341340851671535556256425205757,1661810870170209385499116531813558149446
%N A362998 a(n) = Sum_{k=0..2*n} R(2*n, k, 1) where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
%C A362998 See A363000 for a discussion of the polynomials.
%p A362998 # See A363000 for a program.
%Y A362998 Cf. A363000.
%K A362998 nonn
%O A362998 0,2
%A A362998 _Peter Luschny_, May 12 2023