cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363001 a(n) = denominator(R(n, n, 1)) where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).

This page as a plain text file.
%I A363001 #9 May 12 2023 15:57:34
%S A363001 1,2,2,3,2,15,2,105,2,315,2,3465,2,45045,2,9009,2,153153,2,14549535,2,
%T A363001 14549535,2,19684665,2,1673196525,2,5019589575,2,145568097675,2,
%U A363001 4512611027925,2,4512611027925,2,4512611027925,2,166966608033225,2,316824683175,2,6845630929362225
%N A363001 a(n) = denominator(R(n, n, 1)) where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
%C A363001 See A363000 for a discussion of the polynomials.
%p A363001 # See A363000 for a program.
%Y A363001 Cf. A363000 (numerators), A362999 (odd-indexed denominators).
%K A363001 nonn,frac
%O A363001 0,2
%A A363001 _Peter Luschny_, May 12 2023