A363014 Cubefull numbers (A036966) with a record gap to the next cubefull number.
1, 8, 16, 32, 81, 128, 343, 512, 729, 864, 1024, 1331, 3456, 4096, 6912, 8192, 12167, 25000, 32768, 35937, 43904, 46656, 55296, 70304, 93312, 110592, 117649, 140608, 186624, 287496, 331776, 357911, 373248, 592704, 707281, 889056, 1000000, 1124864, 1157625, 1296000
Offset: 1
Keywords
Examples
The sequence of cubefull numbers begins with 1, 8, 16, 27, 32, 64, 81 and 125. The differences between these terms are 7, 8, 11, 5, 32, 17 and 44. The record values, 7, 8, 11, 32 and 44 occur after the cubefull numbers 1, 8, 16, 32 and 81, the first 5 terms of this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
cubQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 2; seq[kmax_] := Module[{s = {}, k1 = 1, gapmax = 0, gap}, Do[If[cubQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^6]
-
PARI
iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2; lista(kmax) = {my(gapmax = 0, gap, k1 = 1); for(k = 2, kmax, if(iscubefull(k), gap = k - k1; if(gap > gapmax, gapmax = gap; print1(k1, ", ")); k1 = k));}
Comments