This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363018 #17 May 19 2023 14:30:52 %S A363018 9,9,9,9,9,9,9,9,3,4,8,7,5,8,7,8,2,1,5,0,8,5,8,7,4,4,1,6,2,7,0,6,1,2, %T A363018 4,3,1,0,8,3,3,0,5,0,8,1,3,6,0,9,7,2,3,6,6,2,0,8,7,0,2,3,9,0,6,6,2,3, %U A363018 9,9,5,9,4,1,5,9,1,8,8,8,6,5,1,9,7,6,6,3,5,5,9,6,5,6,8,6,9,2,9,8,1,8,2,8,4,1 %N A363018 Decimal expansion of Product_{k>=1} (1 - exp(-6*Pi*k)). %F A363018 Equals exp(Pi/4) * Gamma(1/4) * (2 - sqrt(3))^(1/12) / (2 * 3^(3/8) * Pi^(3/4)). %F A363018 Equals A292888 * A292887. %e A363018 0.999999993487587821508587441627061243108330508136097236620870239066239... %t A363018 RealDigits[E^(Pi/4)*Gamma[1/4]*(2 - Sqrt[3])^(1/12)/(2*3^(3/8)*Pi^(3/4)), 10, 120][[1]] %t A363018 RealDigits[QPochhammer[E^(-6*Pi)], 10, 120][[1]] %Y A363018 Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)). %K A363018 nonn,cons %O A363018 0,1 %A A363018 _Vaclav Kotesovec_, May 13 2023