This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363020 #13 May 19 2023 14:32:15 %S A363020 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,5,7,5,8,8,4,8,8,1,6,9,8,3,9,2,2,2,7, %T A363020 6,1,0,8,9,0,2,0,2,2,0,5,5,9,6,6,9,3,6,2,7,2,7,6,0,8,3,7,0,5,2,5,0,3, %U A363020 7,2,4,8,2,7,2,4,8,8,7,7,0,1,0,8,7,3,5,5,4,7,3,8,9,0,7,7,7,2,9,6,8,0,6,1,8,0 %N A363020 Decimal expansion of Product_{k>=1} (1 - exp(-12*Pi*k)). %F A363020 Equals exp(Pi/2) * Gamma(1/4) * (7 + 28*sqrt(3) - 2*sqrt(6*(469*sqrt(3) - 684)))^(1/24) / (2^(11/8) * 3^(3/8) * Pi^(3/4)). %e A363020 0.999999999999999957588488169839222761089020220559669362727608370525037... %t A363020 RealDigits[E^(Pi/2) * Gamma[1/4] * (7 + 28*Sqrt[3] - 2*Sqrt[6*(-684 + 469*Sqrt[3])])^(1/24) / (2^(11/8)*3^(3/8)*Pi^(3/4)), 10, 120][[1]] %t A363020 RealDigits[QPochhammer[E^(-12*Pi)], 10, 120][[1]] %Y A363020 Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)). %K A363020 nonn,cons %O A363020 0,1 %A A363020 _Vaclav Kotesovec_, May 13 2023