cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363024 Primes of the form 3^(k-1) - 2^k.

This page as a plain text file.
%I A363024 #33 Jun 04 2023 21:12:20
%S A363024 11,179,601,1931,10456158899,617669101316651,984770866999239144049,
%T A363024 2153693958571958138940251,1570042898793851235488822819,
%U A363024 14130386090585813000157964091,11972515182561981102976512358583456508049,19088056323407826758511836230558252318494847619
%N A363024 Primes of the form 3^(k-1) - 2^k.
%C A363024 a(23) has 1117 digits. - _Michael S. Branicky_, May 26 2023
%H A363024 Michael S. Branicky, <a href="/A363024/b363024.txt">Table of n, a(n) for n = 1..22</a>
%e A363024 a(1) = 3^3 - 2^4 = 27 - 16 = 11 (prime).
%e A363024 a(2) = 3^5 - 2^6 = 243 - 64 = 179 (prime).
%t A363024 Select[Table[3^(k - 1) - 2^k, {k, 1 , 100}], PrimeQ]
%Y A363024 Prime terms in A003063.
%Y A363024 Cf. A162714, A363375, A162715 (subsequence).
%K A363024 nonn
%O A363024 1,1
%A A363024 _Sébastien Tao_, May 13 2023