cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363029 Expansion of Sum_{k>0} k * x^(4*k-2) / (1 - x^(5*k-3)).

This page as a plain text file.
%I A363029 #15 Jul 06 2023 07:29:54
%S A363029 0,1,0,1,0,3,0,1,0,4,0,1,2,5,0,1,0,6,0,3,0,10,0,1,0,8,2,1,0,9,4,1,0,
%T A363029 15,0,1,0,11,0,6,2,12,0,1,0,16,0,7,6,14,0,1,0,15,2,1,0,26,0,1,0,24,0,
%U A363029 1,4,18,8,1,2,22,0,1,0,20,0,18,0,21,0,1,0,29,2,6,10,23,0,1,0,33,0,1,0
%N A363029 Expansion of Sum_{k>0} k * x^(4*k-2) / (1 - x^(5*k-3)).
%F A363029 a(n) = (1/5) * Sum_{d | 5*n-2, d==2 (mod 5)} (d+3).
%F A363029 G.f.: Sum_{k>0} x^(2*k) / (1 - x^(5*k-1))^2.
%t A363029 a[n_] := DivisorSum[5*n - 2, # + 3 &, Mod[#, 5] == 2 &]/5; Array[a, 100] (* _Amiram Eldar_, Jul 06 2023 *)
%o A363029 (PARI) a(n) = sumdiv(5*n-2, d, (d%5==2)*(d+3))/5;
%Y A363029 Cf. A359269, A363025.
%K A363029 nonn
%O A363029 1,6
%A A363029 _Seiichi Manyama_, Jul 06 2023