cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363032 Expansion of Sum_{k>0} k * x^(3*k-1) / (1 - x^(5*k-3)).

This page as a plain text file.
%I A363032 #12 Jul 06 2023 07:30:10
%S A363032 0,1,0,1,2,1,0,4,0,1,4,3,0,6,0,1,6,1,2,11,0,1,8,1,0,12,0,5,10,1,0,15,
%T A363032 2,1,12,6,0,14,0,3,14,1,0,25,4,1,18,1,0,18,0,8,18,3,0,23,0,6,20,9,2,
%U A363032 26,0,1,22,1,0,38,0,1,30,1,0,26,2,11,26,1,4,36,0,3,28,19,0,30,0,1,32,1,0,47,0
%N A363032 Expansion of Sum_{k>0} k * x^(3*k-1) / (1 - x^(5*k-3)).
%F A363032 a(n) = (1/5) * Sum_{d | 5*n-4, d==2 (mod 5)} (d+3).
%F A363032 G.f.: Sum_{k>0} x^(2*k) / (1 - x^(5*k-2))^2.
%t A363032 a[n_] := DivisorSum[5*n - 4, # + 3 &, Mod[#, 5] == 2 &]/5; Array[a, 100] (* _Amiram Eldar_, Jul 06 2023 *)
%o A363032 (PARI) a(n) = sumdiv(5*n-4, d, (d%5==2)*(d+3))/5;
%Y A363032 Cf. A359244, A363027.
%K A363032 nonn
%O A363032 1,5
%A A363032 _Seiichi Manyama_, Jul 06 2023