This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363058 #29 Oct 19 2023 06:28:00 %S A363058 1,2,3,5,5,8,9,12,13,16,17,21,21,24,25,28,27,30,29,31,29,30,27,28,25, %T A363058 24,21,21,17,16,13,11,8,6,3,2,1 %N A363058 Number of ways to get n points in a bridge hand. %C A363058 The most common way of evaluating a bridge hand (13 cards from a standard deck) is to count a jack as 1 point, a queen as 2 points, a king as 3 points, and an ace as 4 points, and add them together. (Suits are ignored.) %e A363058 a(2)=2 because you can have a total of 2 points in two ways: two jacks or one queen, and a(3)=3 because you can have a total of 3 points in three ways: one king, one queen plus one jack, or three jacks. %o A363058 (R) %o A363058 card_values <- c( %o A363058 Ace = 4, %o A363058 King = 3, %o A363058 Queen = 2, %o A363058 Jack = 1 %o A363058 ) %o A363058 combinations <- function(n) { %o A363058 count <- 0 %o A363058 for (a in 0:4) { %o A363058 for (k in 0:4) { %o A363058 for (q in 0:4) { %o A363058 for (j in 0:4) { %o A363058 if (a + k + q + j <= 13 && %o A363058 a * card_values['Ace'] + k * card_values['King'] + q * card_values['Queen'] + j * card_values['Jack'] == n) { %o A363058 count <- count + 1 %o A363058 } %o A363058 } %o A363058 } %o A363058 } %o A363058 } %o A363058 return(count) %o A363058 } %o A363058 results_vector <- c() %o A363058 for (n in 1:37) { %o A363058 output <- combinations(n) %o A363058 if (output > 0) { %o A363058 results_vector <- c(results_vector, output) %o A363058 } %o A363058 } %o A363058 format_output <- paste(results_vector, collapse = ", ") %o A363058 cat(format_output) %o A363058 # _W. Kyle Hamilton_, Oct 01 2023 %o A363058 (PARI) a363058(n) = {my (c=0); for (a=0,4, for (k=0,4, for (q=0,4, for (j=0,4, if (a+k+q+j<=13 && 4*a+3*k+2*q+j==n, c++))))); c}; %o A363058 for (n=1,37, print1(a363058(n),", ")) \\ _Hugo Pfoertner_, Oct 01 2023 %Y A363058 Cf. A309777. %K A363058 nonn,fini,full %O A363058 1,2 %A A363058 _Jud McCranie_, May 16 2023