A363059 Numbers k such that the number of divisors of k^2 equals the number of divisors of phi(k), where phi is the Euler totient function.
1, 5, 57, 74, 202, 292, 394, 514, 652, 1354, 2114, 2125, 3145, 3208, 3395, 3723, 3783, 4053, 4401, 5018, 5225, 5298, 5425, 5770, 6039, 6363, 6795, 6918, 7564, 7667, 7676, 7852, 7964, 8585, 9050, 9154, 10178, 10535, 10802, 10818, 10954, 11223, 12411, 13074, 13634
Offset: 1
Keywords
Examples
5 is a term since both 5^2 = 25 and phi(5) = 4 have 3 divisors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Zahra Amroune, Djamel Bellaouar and Abdelmadjid Boudaoud, A class of solutions of the equation d(n^2) = d(phi(n)), Notes on Number Theory and Discrete Mathematics, Vol. 29, No. 2 (2023), pp. 284-309.
- Wikipedia, Dickson's conjecture.
Programs
-
Mathematica
Select[Range[15000], DivisorSigma[0, #^2] == DivisorSigma[0, EulerPhi[#]] &]
-
PARI
is(n) = numdiv(n^2) == numdiv(eulerphi(n));
Comments