This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363061 #52 Jul 09 2023 02:43:42 %S A363061 1,2,5,18,68,283,1161,4843,19985,83074,349670,1456458,6107257, %T A363061 25547835,106115655,440396113,1833079809,7642924612,31705433101, %U A363061 131711607956,546283729493,2257462298234,9339325821411,38593708318690,159600066415313,661371515924516,2736805917843710 %N A363061 Number of k <= P(n) such that rad(k) | P(n), where rad(n) = A007947(n) and P(n) = A002110(n). %H A363061 Bert Dobbelaere, <a href="/A363061/a363061.py.txt">Python program</a> %F A363061 a(n) = A010846(A002110(n)). %F A363061 a(n) >= 2^n. %e A363061 a(0) = 1 since P(0) = 1 and 1 | 1. %e A363061 a(1) = 2 since P(1) = 2 and both 1 | 2 and 2 | 2. %e A363061 a(2) = 5 since P(2) = 6 and rad(m) | 6 for m = {1, 2, 3, 4, 6}. %e A363061 a(3) = 18 since P(3) = 30 and rad(m) | 30 for m = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30}, etc. %e A363061 Regarding a(3), we see that there are 18 terms in the tensor product of prime power ranges of 2, 3, and 5 that do not exceed 30: %e A363061 5^0X | 2^0 2^1 2^2 2^3 2^4 5^1X | 2^0 2^1 2^2 5^2X | 2^0 %e A363061 -------------------------- ------------------ ---------- %e A363061 3^0 | 1 2 4 8 16 3^0 | 5 10 20 3^0 | 25 %e A363061 3^1 | 3 6 12 24 3^1 | 15 30 %e A363061 3^2 | 9 18 %e A363061 3^3 | 27 %e A363061 Hence, a(3) = 18. This approach proves handy for larger n. %t A363061 f[1] = 1; f[n_] := Function[w, %t A363061 ToExpression@ StringJoin["Block[{n = ", ToString@ n, %t A363061 ", k = 0}, Flatten@ Table[k++, ", %t A363061 Most@ Flatten@ Map[{#, ", "} &, #], "]; k]"] &@ %t A363061 MapIndexed[ %t A363061 Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[", %t A363061 ToString@ First@ p, ", n/(", %t A363061 ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]], %t A363061 ")]}"] ]@ w[[First@ #2]] &, w]]@ %t A363061 Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &, %t A363061 FactorInteger[n][[All, 1]]]; %t A363061 Map[f, FoldList[Times, 1, Prime@ Range@ 9] ] %Y A363061 Cf. A002110, A007947, A010846. %K A363061 nonn,hard %O A363061 0,2 %A A363061 _Michael De Vlieger_, Jun 16 2023 %E A363061 Corrected a(15) and added a(16)-a(23) from _Bert Dobbelaere_, Jun 27 2023 %E A363061 a(24)-a(26) from _Martin Ehrenstein_, Jul 08 2023