This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363063 #41 May 27 2025 14:57:45 %S A363063 1,2,4,8,12,16,24,32,48,64,96,128,144,192,256,288,384,512,576,720,768, %T A363063 864,1024,1152,1440,1536,1728,2048,2304,2880,3072,3456,4096,4320,4608, %U A363063 5760,6144,6912,8192,8640,9216,10368,11520,12288,13824,16384,17280,18432 %N A363063 Positive integers k such that the largest power of p dividing k is larger than or equal to the largest power of q dividing k (i.e., A305720(k,p) >= A305720(k,q)) for all primes p and q with p < q. %C A363063 Includes all products of terms in A347284, but there are also other terms such as 4320. %C A363063 Closed under multiplication. - _Peter Munn_, May 21 2023 %H A363063 Pontus von Brömssen, <a href="/A363063/b363063.txt">Table of n, a(n) for n = 1..10000</a> %H A363063 Michael De Vlieger, <a href="/A363063/a363063.png">Plot p^e | a(n) at (x,y) = (n, pi(p))</a>, n = 1..1024, showing multiplicity e with a color function such that e = 1 is black, e = 2 is red, e = 3 is orange, etc., 12X vertical exaggeration. On the bottom, a color code represents a(n) is empty product (black), prime (red), composite prime power (gold), neither squarefree nor prime power (blue). %H A363063 Michael De Vlieger, <a href="/A363063/a363063_1.png">Plot multiplicities e in a(n) = Product p^e at (x,y) = (e, -n)</a> for n = 1..1024, 8X horizontal exaggeration. %e A363063 151200 = 2^5 * 3^3 * 5^2 * 7 is a term, because 2^5 >= 3^3 >= 5^2 >= 7. %e A363063 72 = 2^3 * 3^2 is not a term, because 2^3 < 3^2. %e A363063 40 = 2^3 * 3^0 * 5 is not a term, because 3^0 < 5. %e A363063 From _Michael De Vlieger_, May 19 2023: (Start) %e A363063 Sequence read as an irregular triangle delimited by appearance of 2^m: %e A363063 1 %e A363063 2 %e A363063 4 %e A363063 8 12 %e A363063 16 24 %e A363063 32 48 %e A363063 64 96 %e A363063 128 144 192 %e A363063 256 288 384 %e A363063 512 576 720 768 864 %e A363063 1024 1152 1440 1536 1728 %e A363063 2048 2304 2880 3072 3456 %e A363063 4096 4320 4608 5760 6144 6912 %e A363063 8192 8640 9216 10368 11520 12288 13824 %e A363063 ... (End) %t A363063 Select[Range[20000], # == 1 || PrimePi[(f = FactorInteger[#])[[-1, 1]]] == Length[f] && Greater @@ (Power @@@ f) &] (* _Amiram Eldar_, May 16 2023 *) %o A363063 (Python) %o A363063 from sympy import nextprime %o A363063 primes = [2] # global list of first primes %o A363063 def f(kmax,pi,ppmax): %o A363063 # Generate numbers up to kmax with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime. %o A363063 if len(primes) <= pi: primes.append(nextprime(primes[-1])) %o A363063 p0 = primes[pi] %o A363063 ppmax = min(ppmax,kmax) %o A363063 if ppmax < p0: %o A363063 yield 1 %o A363063 return %o A363063 pp = 1 %o A363063 while pp <= ppmax: %o A363063 for x in f(kmax//pp,pi+1,pp): %o A363063 yield pp*x %o A363063 pp *= p0 %o A363063 def A363063_list(kmax): %o A363063 return sorted(f(kmax,0,kmax)) %Y A363063 Cf. A181818, A305720, A347284, A363098 (primitive terms). %Y A363063 Subsequence of: A087980, {1} U A363122. %K A363063 nonn %O A363063 1,2 %A A363063 _Pontus von Brömssen_, May 16 2023