cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363070 Take the terms 0..n of the infinite Fibonacci word A003849, regard them as a number in Fibonacci base.

This page as a plain text file.
%I A363070 #65 Jun 08 2023 10:34:23
%S A363070 0,1,2,3,6,10,17,28,45,74,120,194,315,510,826,1337,2163,3501,5665,
%T A363070 9167,14833,24000,38834,62835,101669,164505,266175,430681,696857,
%U A363070 1127538,1824396,2951935,4776331,7728267,12504599,20232867,32737467,52970334,85707802,138678137,224385940,363064078
%N A363070 Take the terms 0..n of the infinite Fibonacci word A003849, regard them as a number in Fibonacci base.
%H A363070 Gandhar Joshi, <a href="/A363070/b363070.txt">Table of n, a(n) for n = 0..1000</a>
%H A363070 Agnibha Banerjee, <a href="/A363070/a363070.txt">Python Program</a>, May 16 2023.
%F A363070 a(n) = Sum_{i=0..n} A003849(i)*Fibonacci(n-i+2).
%F A363070 a(n) = a(n-1) + a(n-2) + A003849(n) + A003849(n-1).
%F A363070 a(n) = a(n-1) + a(n-2) + A005713(n-1). - _Kevin Ryde_, May 20 2023
%e A363070 0 ->                            0 -> a(0) = 0,
%e A363070 0,1 ->                         01 -> a(1) = 1,
%e A363070 0,1,0 ->                      010 -> a(2) = 2,
%e A363070 0,1,0,0 ->                   0100 -> a(3) = 3,
%e A363070 0,1,0,0,1 ->                01001 -> a(4) = 6,
%e A363070 0,1,0,0,1,0 ->             010010 -> a(5) = 10,
%e A363070 0,1,0,0,1,0,1 ->          0100101 -> a(6) = 17,
%e A363070 0,1,0,0,1,0,1,0 ->       01001010 -> a(7) = 28,
%e A363070 0,1,0,0,1,0,1,0,0 ->    010010100 -> a(8) = 45,
%e A363070 0,1,0,0,1,0,1,0,0,1 -> 0100101001 -> a(9) = 74.
%o A363070 (Python) # see linked program
%o A363070 (Python)
%o A363070 def aupto(n): # produces n terms, indices 0..n-1
%o A363070     F1, F, a = [0], [0, 1], [0, 1]
%o A363070     while len(F) < n:
%o A363070         F1, F = F, F+F1
%o A363070     [a.append(a[-2]+a[-1]+F[i]+F[i-1]) for i in range(2, n)]
%o A363070     return a
%o A363070 print(aupto(42)) # _Michael S. Branicky_, May 17 2023
%Y A363070 Cf. A003849 (Fibonacci word), A005713, A189920 (Zeckendorf digits).
%Y A363070 Cf. A182028.
%K A363070 base,nonn
%O A363070 0,3
%A A363070 _Gandhar Joshi_, May 16 2023