cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363074 Prime numbers that are the exact average of two consecutive odd semiprimes.

This page as a plain text file.
%I A363074 #41 Jul 05 2023 12:19:53
%S A363074 23,29,37,53,61,67,73,89,103,113,131,137,157,173,211,251,277,293,307,
%T A363074 337,379,409,449,461,487,491,499,503,523,569,617,631,661,683,701,719,
%U A363074 727,751,769,787,919,941,953,991,1009,1019,1039,1051,1063,1117,1153,1193,1201,1223,1259,1279,1289,1381,1399
%N A363074 Prime numbers that are the exact average of two consecutive odd semiprimes.
%e A363074 23 is a term because (21 + 25)/2 = 23 is prime.
%e A363074 29 is a term because (25 + 33)/2 = 29 is prime.
%t A363074 Select[Plus @@@ Partition[Select[Range[1, 1410, 2], PrimeOmega[#] == 2 &], 2, 1] / 2, PrimeQ] (* _Amiram Eldar_, May 21 2023 *)
%o A363074 (Python)
%o A363074 from itertools import count, islice
%o A363074 from sympy import factorint, isprime
%o A363074 def semiprime(n): return sum(e for e in factorint(n).values()) == 2
%o A363074 def nextoddsemiprime(n): return next(k for k in count(n+1+(n&1), 2) if semiprime(k))
%o A363074 def agen(): # generator of terms
%o A363074     osp = [9, 15]
%o A363074     while True:
%o A363074         q, r = divmod(sum(osp), len(osp))
%o A363074         if r == 0 and isprime(q):
%o A363074             yield q
%o A363074         osp = osp[1:] + [nextoddsemiprime(osp[-1])]
%o A363074 print(list(islice(agen(), 59))) # _Michael S. Branicky_, May 21 2023
%Y A363074 Cf. A000040, A046315.
%Y A363074 Cf. A363187, A363188.
%K A363074 nonn
%O A363074 1,1
%A A363074 _Elmo R. Oliveira_, May 20 2023