This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363099 #51 May 25 2023 15:12:41 %S A363099 11,3,12,13,91,27,96,107,3,108,109,731,219,768,859,27,864,875,3,876, %T A363099 877,5851,1755,6144,6875,219,6912,7003,27,7008,7019,3,7020,7021,46811, %U A363099 14043,49152,55003,1755,55296,56027,219,56064,56155,27,56160,56171,3,56172,56173,374491,112347,393216,440027,14043,442368 %N A363099 Triangle T(n,k) in which the n-th row encodes the inverse of a 3n+1 X 3n+1 Jacobi matrix, with 1's on the lower, main, and upper diagonals in GF(2), where the encoding consists of the decimal representations for the binary rows (n >= 1, 1 <= k <= 3n+1). %C A363099 Each term in the sequence encodes a line of the inverse of a Jacobi matrix that has 1s on its lower, main, and upper diagonals in GF(2). The associated inverse matrix column values come from the binary representation of that base-10 number, being a bit per column. These matrices start with a 4 X 4 matrix and the consecutive terms came by adding ascending and consecutive multiples of 3. If the binary number has fewer bits than the number of columns, it must be zero-padded to the left. To obtain the inverse matrices in real numbers instead of GF(2), alternate between + and - between the 1s in a row. If a row is a multiple of 3, alternate between - and +. The determinants of these 3m+1 X 3m+1 Jacobi matrices are 1 in GF(2), and alternate between -1 and 1 in R if m is odd or even. These properties were proven by Sutner (1989) and Melo (1997), respectively. %D A363099 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Boston, 2nd Ed., 12th printing, 2002, pp. 24-25. %D A363099 P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Boston, 1985, p. 35. %D A363099 J. P. Melo, Reversibility of John von Neumann cellular automata, M.Sc. Thesis, Division of Computer Science, Instituto Tecnológico de Aeronáutica, 1997 (in Portuguese), p. 18. %H A363099 Nei Y. Soma, <a href="/A363099/b363099.txt">Rows n = 1..30, flattened</a> %H A363099 K. Sutner, <a href="https://www.link.cs.cmu.edu/15859-s11/notes/sutner.pdf">Linear Cellular Automata and the Garden-of-Eden</a>, The Mathematical Intelligencer, 11(2), 1989, pp. 49-53; see p. 52 %F A363099 The recurrence has as its base: %F A363099 r(1, 1) = 11; %F A363099 r(2, 1) = 3; %F A363099 r(3, 1) = 12; %F A363099 r(4, 1) = 13. %F A363099 For 2 <= k <= m, and i = 1, 2, 3, ..., 3k - 2: %F A363099 r(i, k) = 8*r(i, k-1) + r(2, 1) (i != 0 (mod 3)). %F A363099 And r(3k-1, k) = r(2, 1); %F A363099 r(3k, k) = 8*r(3(k-1), k-1) + r(3,1); %F A363099 r(3k+1, k) = 8*r(3(k-1), k-1) + r(4,1). %e A363099 For m = 1, the Jacobi 4 X 4 matrix has as rows %e A363099 1, 1, 0, 0 %e A363099 1, 1, 1, 0 %e A363099 0, 1, 1, 1 %e A363099 0, 0, 1, 1 %e A363099 Its inverse has the rows %e A363099 1, 0, 1, 1 %e A363099 0, 0, 1, 1 %e A363099 1, 1, 0, 0 %e A363099 1, 1, 0, 1 %e A363099 Representing these rows as binary numbers in base 10 the first three terms of the sequence are: 11, 3, 12, 13. %e A363099 The next numbers in the sequence occur for m = 2, given a sequence of six numbers. The Jacobi 7 X 7 matrix has as its rows: %e A363099 1, 1, 0, 0, 0, 0, 0 %e A363099 1, 1, 1, 0, 0, 0, 0 %e A363099 0, 1, 1, 1, 0, 0, 0 %e A363099 0, 0, 1, 1, 1, 0, 0 %e A363099 0, 0, 0, 1, 1, 1, 0 %e A363099 0, 0, 0, 0, 1, 1, 1 %e A363099 0, 0, 0, 0, 0, 1, 1 %e A363099 Its inverse has as rows: %e A363099 1, 0, 1, 1, 0, 1, 1 %e A363099 0, 0, 1, 1, 0, 1, 1 %e A363099 1, 1, 0, 0, 0, 0, 0 %e A363099 1, 1, 0, 1, 0, 1, 1 %e A363099 0, 0, 0, 0, 0, 1, 1 %e A363099 1, 1, 0, 1, 1, 0, 0 %e A363099 1, 1, 0, 1, 1, 0, 1 %e A363099 These 7 latter rows from binary to base 10 give the next 7 terms of the sequence: 91, 27, 96, 107, 3, 108, 109. %e A363099 Triangle T(n,k) begins: %e A363099 11, 3, 12, 13; %e A363099 91, 27, 96, 107, 3, 108, 109; %e A363099 731, 219, 768, 859, 27, 864, 875, 3, 876, 877; %e A363099 5851, 1755, 6144, 6875, 219, 6912, 7003, 27, 7008, 7019, 3, 7020, 7021; %e A363099 ... %p A363099 T:= n-> (M-> seq(add(abs(M[j, n*3+1-i])*2^i, i=0..n*3), j=1..n*3+1)) %p A363099 (Matrix(n*3+1, (i, j)-> `if`(abs(i-j)<2, 1, 0))^(-1)): %p A363099 seq(T(n), n=1..6); # _Alois P. Heinz_, May 20 2023 %t A363099 sequence = {}; %t A363099 For[k = 1, k <= 50, k++, { %t A363099 n = 3*k + 1; %t A363099 J = ConstantArray[0, {n, n}]; %t A363099 For[i = 1, i < n, i++, %t A363099 J[[i, i]] = J[[i + 1, i]] = J[[i, i + 1]] = 1]; %t A363099 J[[1, 1]] = J[[n, n]] = 1; %t A363099 InvJ = Mod[Inverse[J], 2]; %t A363099 For[i = 1, i <= n, i++, AppendTo[sequence, FromDigits[InvJ[[i]], 2]]] %t A363099 } %t A363099 ] %t A363099 sequence %o A363099 (PARI) row(n)=my(m=3*n+1, A=lift(matrix(m, m, i, j, Mod(abs(i-j)<=1, 2))^(-1))); vector(m, i, fromdigits(A[i,], 2)) \\ _Andrew Howroyd_, May 20 2023 %Y A363099 Column k=1 gives A245599(n+1). %Y A363099 Column k=2 gives A083713. %Y A363099 Column k=3 gives A204623. %Y A363099 T(n,3n-1) gives A010701. %Y A363099 Cf. A038184 One-dimensional cellular automaton (Rule 150) in a tape with 3m cells has as adjacency matrix the Jacobi matrices, 3m X 3m, with 1s on the lower, main and upper diagonals and the operations on it are in GF(2). And A363146 for the inverse of Jacobi matrices 3m X 3m, with 1s on the lower, main, and upper diagonals in GF(2). %K A363099 nonn,base,tabf %O A363099 1,1 %A A363099 _Nei Y. Soma_, May 20 2023