This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363107 #8 May 25 2023 08:58:26 %S A363107 1,2,6,20,60,196,644,2128,7178,24374,83496,288420,1002272,3503748, %T A363107 12311818,43458316,154038006,548018604,1956263020,7004845080, %U A363107 25153186956,90554989440,326790211458,1181910952584,4283416505940,15553332981066,56575492155764,206136324338908 %N A363107 Expansion of g.f. A(x) satisfying 2 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^(n-2))^(n+1). %H A363107 Paul D. Hanna, <a href="/A363107/b363107.txt">Table of n, a(n) for n = 0..300</a> %F A363107 G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows. %F A363107 (1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^(n-2))^(n+1). %F A363107 (2) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(4*n) * (2*A(x) + x^(n-1))^n. %F A363107 (3) 2*x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+2))^(n-1). %F A363107 (4) 2*x^2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+2))^(n+1). %F A363107 (5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^(n-2))^n. %F A363107 (6) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(3*n-2) * (2*A(x) + x^(n-2))^(n-1). %F A363107 (7) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^(n+2))^(n+1). %F A363107 (8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^(n-1))^n. %F A363107 (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+2))^n. %e A363107 G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 60*x^4 + 196*x^5 + 644*x^6 + 2128*x^7 + 7178*x^8 + 24374*x^9 + 83496*x^10 + 288420*x^11 + 1002272*x^12 + ... %o A363107 (PARI) {a(n) = my(A=[1], y=2); for(i=1, n, A = concat(A, 0); %o A363107 A[#A] = polcoeff(y - sum(n=-#A, #A, (-1)^n * x^(2*n) * (y*Ser(A) + x^(n-2))^(n+1) )/y, #A-1, x) ); A[n+1]} %o A363107 for(n=0, 30, print1( a(n), ", ")) %o A363107 (PARI) {a(n) = my(A=1, y=2); for(i=1, n, %o A363107 A = 1/sum(m=-n,n, (-1)^m * x^(2*m) * (y*A + x^(m-2) + x*O(x^n) )^m ) ); %o A363107 polcoeff( A, n, x)} %o A363107 for(n=0, 30, print1( a(n), ", ")) %Y A363107 Cf. A359712, A363106, A363108, A363109. %K A363107 nonn %O A363107 0,2 %A A363107 _Paul D. Hanna_, May 24 2023