cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363117 Decimal expansion of Product_{k>=1} (1 - exp(-7*Pi*k)).

This page as a plain text file.
%I A363117 #10 May 19 2023 14:31:08
%S A363117 9,9,9,9,9,9,9,9,9,7,1,8,5,7,3,1,5,4,1,7,2,2,4,3,6,5,8,3,8,2,9,0,1,2,
%T A363117 3,6,4,6,2,9,1,9,5,6,0,2,5,7,0,7,6,4,9,0,2,9,8,1,2,2,0,8,6,1,0,0,1,1,
%U A363117 7,6,6,9,4,5,4,3,5,0,1,4,7,6,7,0,9,9,1,9,7,6,5,2,7,6,7,7,8,9,3,4,4,1,7,5,6,3
%N A363117 Decimal expansion of Product_{k>=1} (1 - exp(-7*Pi*k)).
%F A363117 Equals exp(7*Pi/24) * Gamma(1/4) * ((sqrt(5 - sqrt(7)) - sqrt(3*sqrt(7) - 7)) * (2^(1/4) * sqrt(5 + sqrt(7)) + (56 + 23*sqrt(7))^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)).
%e A363117 0.999999999718573154172243658382901236462919560257076490298122086100117...
%t A363117 RealDigits[E^(7*Pi/24) * Gamma[1/4] * ((Sqrt[5 - Sqrt[7]] - Sqrt[3*Sqrt[7] - 7]) * (2^(1/4) * Sqrt[5 + Sqrt[7]] + (56 + 23*Sqrt[7])^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)), 10, 120][[1]]
%t A363117 RealDigits[QPochhammer[E^(-7*Pi)], 10, 120][[1]]
%Y A363117 Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).
%K A363117 nonn,cons
%O A363117 0,1
%A A363117 _Vaclav Kotesovec_, May 15 2023