A363121 Primitive terms of A116882: terms k of A116882 such that k/2 is not a term of A116882.
1, 12, 40, 56, 144, 176, 208, 240, 544, 608, 672, 736, 800, 864, 928, 992, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 3008, 3136, 3264, 3392, 3520, 3648, 3776, 3904, 4032, 8320, 8576, 8832, 9088, 9344, 9600, 9856, 10112, 10368, 10624, 10880, 11136, 11392, 11648, 11904
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Join[{1}, Select[Range[2, 12000, 2], q[#] && !q[#/2] &]] (* or *) a[1] = 1; a[n_] := (2*n - 1)*2^IntegerLength[2*n - 1, 2]; Array[a, 100]
-
PARI
a(n) = if(n == 1, 1, (2*n - 1)*2^length(binary(2*n - 1)));
-
Python
def A363121(n): return (m:=2*n-1)<
1 else 1 # Chai Wah Wu, May 17 2023
Formula
a(n) = (2*n-1)*2^A070941(n-1), for n > 1.
Comments