cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363123 Primitive terms of A363122: terms k of A363122 such that k/2 is not a term of A363122.

Original entry on oeis.org

2, 12, 40, 56, 120, 144, 168, 176, 208, 280, 528, 544, 608, 624, 720, 736, 800, 840, 864, 880, 928, 992, 1008, 1040, 1232, 1456, 1584, 1632, 1824, 1872, 2208, 2288, 2368, 2400, 2624, 2640, 2720, 2752, 2784, 2976, 3008, 3040, 3120, 3136, 3392, 3680, 3696, 3776
Offset: 1

Views

Author

Amiram Eldar, May 16 2023

Keywords

Comments

If k is a term of this sequence then k*2^m is a term of A363122 for any m >= 0.

Crossrefs

Cf. A363122.

Programs

  • Maple
    filter:= proc(n) local F2,Fp,v2,vp, t;
      F2, Fp:= selectremove(t -> t[1]=2, ifactors(n)[2]);
      if Fp = [] then return (n=2) fi;
      v2:= 2^F2[1,2];
      vp:= max(map(t -> t[1]^t[2],Fp));
      v2 > vp and v2/2 <= vp;
    end proc:
    select(filter, [seq(i,i=2.10000,2)]); # Robert Israel, May 18 2023
  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[2, 10000, 2], q[#] && ! q[#/2] &]
  • PARI
    is1(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); } \\ A363122
    is(n) = !(n%2) && is1(n) && !is1(n/2)
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A363123_gen(startvalue=2): # generator of terms
        return filter(lambda n:(m:=n&-n)>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()),default=1)>=m>>1,count(max(startvalue,2)))
    A363123_list = list(islice(A363123_gen(),20)) # Chai Wah Wu, May 17 2023