This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363125 #6 May 17 2023 08:35:54 %S A363125 0,0,0,0,1,3,3,8,9,13,18,24,24,36,41,45,57,68,72,87,95,105,131,136, %T A363125 149,164,199,203,232,246,276,298,335,347,409,399,467,488,567,569,636, %U A363125 662,757,767,878,887,1028,1030,1168,1181,1342,1388,1558,1570,1789,1791 %N A363125 Number of integer partitions of n with a unique non-mode. %C A363125 A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}. %e A363125 The a(4) = 1 through a(9) = 13 partitions: %e A363125 (211) (221) (411) (322) (332) (441) %e A363125 (311) (3111) (331) (422) (522) %e A363125 (2111) (21111) (511) (611) (711) %e A363125 (2221) (5111) (3222) %e A363125 (4111) (22211) (6111) %e A363125 (22111) (41111) (22221) %e A363125 (31111) (221111) (32211) %e A363125 (211111) (311111) (33111) %e A363125 (2111111) (51111) %e A363125 (411111) %e A363125 (2211111) %e A363125 (3111111) %e A363125 (21111111) %t A363125 nmsi[ms_]:=Select[Union[ms],Count[ms,#]<Max@@Length/@Split[ms]&]; %t A363125 Table[Length[Select[IntegerPartitions[n],Length[nmsi[#]]==1&]],{n,0,30}] %Y A363125 For middle parts instead of non-modes we have A238478, complement A238479. %Y A363125 For modes instead of non-modes we have A362608, complement A362607. %Y A363125 For co-modes instead of non-modes we have A362610, complement A362609. %Y A363125 The complement is counted by A363124. %Y A363125 For non-co-modes instead of non-modes we have A363129, complement A363128. %Y A363125 A000041 counts integer partitions. %Y A363125 A008284/A058398 count partitions by length/mean. %Y A363125 A362611 counts modes in prime factorization, triangle A362614. %Y A363125 A363127 counts non-modes in prime factorization, triangle A363126. %Y A363125 Cf. A002865, A053263, A098859, A237984, A275870, A327472, A353836, A353863, A359893, A362612. %K A363125 nonn %O A363125 0,6 %A A363125 _Gus Wiseman_, May 16 2023