cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.

This page as a plain text file.
%I A363126 #6 May 17 2023 23:25:55
%S A363126 1,1,2,3,4,1,4,3,8,3,6,8,1,10,9,3,11,13,6,15,18,9,13,24,18,1,25,24,25,
%T A363126 3,19,36,40,6,29,41,52,13,33,45,79,19,42,57,95,36,1,39,68,133,54,3,62,
%U A363126 72,158,87,6,55,87,214,121,13,81,95,250,177,24
%N A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.
%C A363126 A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.
%e A363126 Triangle begins:
%e A363126    1
%e A363126    1
%e A363126    2
%e A363126    3
%e A363126    4   1
%e A363126    4   3
%e A363126    8   3
%e A363126    6   8   1
%e A363126   10   9   3
%e A363126   11  13   6
%e A363126   15  18   9
%e A363126   13  24  18   1
%e A363126   25  24  25   3
%e A363126   19  36  40   6
%e A363126   29  41  52  13
%e A363126   33  45  79  19
%e A363126   42  57  95  36   1
%e A363126   39  68 133  54   3
%e A363126 Row n = 9 counts the following partitions:
%e A363126   (9)          (441)       (3321)
%e A363126   (54)         (522)       (4221)
%e A363126   (63)         (711)       (4311)
%e A363126   (72)         (3222)      (5211)
%e A363126   (81)         (6111)      (42111)
%e A363126   (333)        (22221)     (321111)
%e A363126   (432)        (32211)
%e A363126   (531)        (33111)
%e A363126   (621)        (51111)
%e A363126   (222111)     (411111)
%e A363126   (111111111)  (2211111)
%e A363126                (3111111)
%e A363126                (21111111)
%t A363126 nmsi[ms_]:=Select[Union[ms],Count[ms,#]<Max@@Length/@Split[ms]&];
%t A363126 DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[nmsi[#]]==k&]],{n,0,15},{k,0,Sqrt[n]}],0,{2}]
%Y A363126 Row sums are A000041.
%Y A363126 Row lengths are approximately A000196.
%Y A363126 Column k = 0 is A047966.
%Y A363126 For modes we have A362614, rank statistic A362611.
%Y A363126 For co-modes we have A362615, rank statistic A362613.
%Y A363126 Columns k > 1 sum to A363124.
%Y A363126 Column k = 1 is A363125.
%Y A363126 This rank statistic (number of non-modes) is A363127.
%Y A363126 For non-co-modes we have A363130, rank statistic A363131.
%Y A363126 A008284/A058398 count partitions by length/mean.
%Y A363126 A275870 counts collapsible partitions.
%Y A363126 A353836 counts partitions by number of distinct run-sums.
%Y A363126 A359893 counts partitions by median.
%Y A363126 Cf. A002865, A053263, A098859, A237984, A238478, A327472, A353863, A353864, A362612.
%K A363126 nonn,tabf
%O A363126 0,3
%A A363126 _Gus Wiseman_, May 16 2023