This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363126 #6 May 17 2023 23:25:55 %S A363126 1,1,2,3,4,1,4,3,8,3,6,8,1,10,9,3,11,13,6,15,18,9,13,24,18,1,25,24,25, %T A363126 3,19,36,40,6,29,41,52,13,33,45,79,19,42,57,95,36,1,39,68,133,54,3,62, %U A363126 72,158,87,6,55,87,214,121,13,81,95,250,177,24 %N A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed. %C A363126 A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}. %e A363126 Triangle begins: %e A363126 1 %e A363126 1 %e A363126 2 %e A363126 3 %e A363126 4 1 %e A363126 4 3 %e A363126 8 3 %e A363126 6 8 1 %e A363126 10 9 3 %e A363126 11 13 6 %e A363126 15 18 9 %e A363126 13 24 18 1 %e A363126 25 24 25 3 %e A363126 19 36 40 6 %e A363126 29 41 52 13 %e A363126 33 45 79 19 %e A363126 42 57 95 36 1 %e A363126 39 68 133 54 3 %e A363126 Row n = 9 counts the following partitions: %e A363126 (9) (441) (3321) %e A363126 (54) (522) (4221) %e A363126 (63) (711) (4311) %e A363126 (72) (3222) (5211) %e A363126 (81) (6111) (42111) %e A363126 (333) (22221) (321111) %e A363126 (432) (32211) %e A363126 (531) (33111) %e A363126 (621) (51111) %e A363126 (222111) (411111) %e A363126 (111111111) (2211111) %e A363126 (3111111) %e A363126 (21111111) %t A363126 nmsi[ms_]:=Select[Union[ms],Count[ms,#]<Max@@Length/@Split[ms]&]; %t A363126 DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[nmsi[#]]==k&]],{n,0,15},{k,0,Sqrt[n]}],0,{2}] %Y A363126 Row sums are A000041. %Y A363126 Row lengths are approximately A000196. %Y A363126 Column k = 0 is A047966. %Y A363126 For modes we have A362614, rank statistic A362611. %Y A363126 For co-modes we have A362615, rank statistic A362613. %Y A363126 Columns k > 1 sum to A363124. %Y A363126 Column k = 1 is A363125. %Y A363126 This rank statistic (number of non-modes) is A363127. %Y A363126 For non-co-modes we have A363130, rank statistic A363131. %Y A363126 A008284/A058398 count partitions by length/mean. %Y A363126 A275870 counts collapsible partitions. %Y A363126 A353836 counts partitions by number of distinct run-sums. %Y A363126 A359893 counts partitions by median. %Y A363126 Cf. A002865, A053263, A098859, A237984, A238478, A327472, A353863, A353864, A362612. %K A363126 nonn,tabf %O A363126 0,3 %A A363126 _Gus Wiseman_, May 16 2023