This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363128 #6 May 18 2023 08:33:30 %S A363128 0,0,0,0,0,0,0,0,0,1,3,6,9,18,25,44,60,96,122,188,243,344,442,615,769, %T A363128 1047,1308,1722,2150,2791,3430,4405,5401,6803,8326,10408,12608,15641, %U A363128 18906,23179,27935,34061,40778,49451,59038,71060,84604,101386,120114,143358 %N A363128 Number of integer partitions of n with more than one non-co-mode. %C A363128 We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}. %e A363128 The a(9) = 1 through a(12) = 9 partitions: %e A363128 (32211) (33211) (33221) (43311) %e A363128 (42211) (52211) (44211) %e A363128 (322111) (322211) (62211) %e A363128 (332111) (422211) %e A363128 (422111) (522111) %e A363128 (3221111) (3222111) %e A363128 (3321111) %e A363128 (4221111) %e A363128 (32211111) %t A363128 ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&]; %t A363128 Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]>1&]],{n,0,30}] %Y A363128 For parts instead of multiplicities we have %Y A363128 For middles instead of non-co-modes we have A238479, complement A238478. %Y A363128 For modes instead of non-co-modes we have A362607, complement A362608. %Y A363128 For co-modes instead of non-co-modes we have A362609, complement A362610. %Y A363128 For non-modes instead of non-co-modes we have A363124, complement A363125. %Y A363128 The complement is counted by A363129. %Y A363128 A000041 counts integer partitions. %Y A363128 A008284/A058398 count partitions by length/mean. %Y A363128 A362611 counts modes in prime factorization, triangle A362614. %Y A363128 A362613 counts co-modes in prime factorization, triangle A362615. %Y A363128 A363127 counts non-modes in prime factorization, triangle A363126. %Y A363128 A363131 counts non-co-modes in prime factorization, triangle A363130. %Y A363128 Cf. A002865, A053263, A098859, A237984, A275870, A327472, A353836, A353863, A359893, A362612. %K A363128 nonn %O A363128 0,11 %A A363128 _Gus Wiseman_, May 18 2023