This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363129 #5 May 18 2023 08:34:52 %S A363129 0,0,0,0,1,3,3,9,12,18,24,37,43,64,81,99,129,162,201,247,303,364,457, %T A363129 535,653,765,943,1085,1315,1517,1830,2096,2516,2877,3432,3881,4622, %U A363129 5235,6189,7003,8203,9261,10859,12199,14216,15985,18544,20777,24064,26897 %N A363129 Number of integer partitions of n with a unique non-co-mode. %C A363129 We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}. %e A363129 The a(4) = 1 through a(9) = 18 partitions: %e A363129 (211) (221) (411) (322) (332) (441) %e A363129 (311) (3111) (331) (422) (522) %e A363129 (2111) (21111) (511) (611) (711) %e A363129 (2221) (3221) (3222) %e A363129 (3211) (4211) (3321) %e A363129 (4111) (5111) (4221) %e A363129 (22111) (22211) (4311) %e A363129 (31111) (32111) (5211) %e A363129 (211111) (41111) (6111) %e A363129 (221111) (22221) %e A363129 (311111) (33111) %e A363129 (2111111) (42111) %e A363129 (51111) %e A363129 (321111) %e A363129 (411111) %e A363129 (2211111) %e A363129 (3111111) %e A363129 (21111111) %t A363129 ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&]; %t A363129 Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]==1&]],{n,0,30}] %Y A363129 For parts instead of multiplicities we have A002133. %Y A363129 For middles instead of non-co-modes we have A238478, complement A238479. %Y A363129 For modes instead of non-co-modes we have A362608, complement A362607. %Y A363129 For co-modes instead of non-co-modes we have A362610, complement A362609. %Y A363129 For non-modes instead of non-co-modes we have A363125, complement A363124. %Y A363129 The complement is counted by A363128. %Y A363129 A000041 counts integer partitions. %Y A363129 A008284/A058398 count partitions by length/mean. %Y A363129 A362611 counts modes in prime factorization, triangle A362614. %Y A363129 A362613 counts co-modes in prime factorization, triangle A362615. %Y A363129 A363127 counts non-modes in prime factorization, triangle A363126. %Y A363129 A363131 counts non-co-modes in prime factorization, triangle A363130. %Y A363129 Cf. A002865, A053263, A098859, A237984, A275870, A327472, A353836, A353863, A359893, A362612. %K A363129 nonn %O A363129 0,6 %A A363129 _Gus Wiseman_, May 18 2023