This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363130 #5 May 18 2023 08:33:26 %S A363130 1,1,2,3,4,1,4,3,8,3,6,9,10,12,11,18,1,15,24,3,13,37,6,25,43,9,19,64, %T A363130 18,29,81,25,33,99,44,42,129,59,1,39,162,93,3,62,201,116,6,55,247,175, %U A363130 13,81,303,224,19,84,364,309,35,103,457,389,53,105,535,529,86 %N A363130 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-co-modes, all 0's removed. %C A363130 We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}. %e A363130 Triangle begins: %e A363130 1 %e A363130 1 %e A363130 2 %e A363130 3 %e A363130 4 1 %e A363130 4 3 %e A363130 8 3 %e A363130 6 9 %e A363130 10 12 %e A363130 11 18 1 %e A363130 15 24 3 %e A363130 13 37 6 %e A363130 25 43 9 %e A363130 19 64 18 %e A363130 29 81 25 %e A363130 33 99 44 %e A363130 Row n = 9 counts the following partitions: %e A363130 (9) (441) (32211) %e A363130 (54) (522) %e A363130 (63) (711) %e A363130 (72) (3222) %e A363130 (81) (3321) %e A363130 (333) (4221) %e A363130 (432) (4311) %e A363130 (531) (5211) %e A363130 (621) (6111) %e A363130 (222111) (22221) %e A363130 (111111111) (33111) %e A363130 (42111) %e A363130 (51111) %e A363130 (321111) %e A363130 (411111) %e A363130 (2211111) %e A363130 (3111111) %e A363130 (21111111) %t A363130 ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&]; %t A363130 DeleteCases[Table[Length[Select[IntegerPartitions[n] , Length[ncomsi[#]]==k&]],{n,0,15},{k,0,Sqrt[n]}],0,{2}] %Y A363130 Row sums are A000041. %Y A363130 Row lengths are approximately A000196. %Y A363130 Column k = 0 is A047966. %Y A363130 For modes instead of non-co-modes we have A362614, rank stat A362611. %Y A363130 For co-modes instead of non-co-modes we have A362615, rank stat A362613. %Y A363130 For non-modes instead of non-co-modes we have A363126, rank stat A363127. %Y A363130 Columns k > 1 sum to A363128. %Y A363130 Column k = 1 is A363129. %Y A363130 This rank statistic (number of non-co-modes) is A363131. %Y A363130 A008284/A058398 count partitions by length/mean. %Y A363130 A275870 counts collapsible partitions. %Y A363130 A353836 counts partitions by number of distinct run-sums. %Y A363130 A359893 counts partitions by median. %Y A363130 Cf. A002865, A053263, A098859, A237984, A327472, A353863, A362612, A363124, A363125. %K A363130 nonn,tabf %O A363130 0,3 %A A363130 _Gus Wiseman_, May 18 2023