cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363130 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-co-modes, all 0's removed.

This page as a plain text file.
%I A363130 #5 May 18 2023 08:33:26
%S A363130 1,1,2,3,4,1,4,3,8,3,6,9,10,12,11,18,1,15,24,3,13,37,6,25,43,9,19,64,
%T A363130 18,29,81,25,33,99,44,42,129,59,1,39,162,93,3,62,201,116,6,55,247,175,
%U A363130 13,81,303,224,19,84,364,309,35,103,457,389,53,105,535,529,86
%N A363130 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-co-modes, all 0's removed.
%C A363130 We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.
%e A363130 Triangle begins:
%e A363130    1
%e A363130    1
%e A363130    2
%e A363130    3
%e A363130    4   1
%e A363130    4   3
%e A363130    8   3
%e A363130    6   9
%e A363130   10  12
%e A363130   11  18   1
%e A363130   15  24   3
%e A363130   13  37   6
%e A363130   25  43   9
%e A363130   19  64  18
%e A363130   29  81  25
%e A363130   33  99  44
%e A363130 Row n = 9 counts the following partitions:
%e A363130   (9)          (441)       (32211)
%e A363130   (54)         (522)
%e A363130   (63)         (711)
%e A363130   (72)         (3222)
%e A363130   (81)         (3321)
%e A363130   (333)        (4221)
%e A363130   (432)        (4311)
%e A363130   (531)        (5211)
%e A363130   (621)        (6111)
%e A363130   (222111)     (22221)
%e A363130   (111111111)  (33111)
%e A363130                (42111)
%e A363130                (51111)
%e A363130                (321111)
%e A363130                (411111)
%e A363130                (2211111)
%e A363130                (3111111)
%e A363130                (21111111)
%t A363130 ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
%t A363130 DeleteCases[Table[Length[Select[IntegerPartitions[n] , Length[ncomsi[#]]==k&]],{n,0,15},{k,0,Sqrt[n]}],0,{2}]
%Y A363130 Row sums are A000041.
%Y A363130 Row lengths are approximately A000196.
%Y A363130 Column k = 0 is A047966.
%Y A363130 For modes instead of non-co-modes we have A362614, rank stat A362611.
%Y A363130 For co-modes instead of non-co-modes we have A362615, rank stat A362613.
%Y A363130 For non-modes instead of non-co-modes we have A363126, rank stat A363127.
%Y A363130 Columns k > 1 sum to A363128.
%Y A363130 Column k = 1 is A363129.
%Y A363130 This rank statistic (number of non-co-modes) is A363131.
%Y A363130 A008284/A058398 count partitions by length/mean.
%Y A363130 A275870 counts collapsible partitions.
%Y A363130 A353836 counts partitions by number of distinct run-sums.
%Y A363130 A359893 counts partitions by median.
%Y A363130 Cf. A002865, A053263, A098859, A237984, A327472, A353863, A362612, A363124, A363125.
%K A363130 nonn,tabf
%O A363130 0,3
%A A363130 _Gus Wiseman_, May 18 2023