This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363132 #15 Dec 30 2023 21:24:01 %S A363132 0,0,1,2,5,6,15,14,32,34,65,55,150,100,225,237,425,296,824,489,1267, %T A363132 1133,1809,1254,4018,2142,4499,4550,7939,4564,14571,6841,18285,16047, %U A363132 23408,17495,52545,21636,49943,51182,92516,44582,144872,63260,175318,169232,205353 %N A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean). %C A363132 Equivalently, n = (length)*(minimum). %e A363132 The a(2) = 1 through a(7) = 14 partitions: %e A363132 (31) (321) (62) (32221) (93) (3222221) %e A363132 (411) (3221) (33211) (552) (3322211) %e A363132 (3311) (42211) (642) (3332111) %e A363132 (4211) (43111) (732) (4222211) %e A363132 (5111) (52111) (822) (4322111) %e A363132 (61111) (322221) (4331111) %e A363132 (332211) (4421111) %e A363132 (333111) (5222111) %e A363132 (422211) (5321111) %e A363132 (432111) (5411111) %e A363132 (441111) (6221111) %e A363132 (522111) (6311111) %e A363132 (531111) (7211111) %e A363132 (621111) (8111111) %e A363132 (711111) %t A363132 Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}] %o A363132 (Python) %o A363132 from sympy.utilities.iterables import partitions %o A363132 def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # _Chai Wah Wu_, Sep 21 2023 %Y A363132 Removing the factor 2 gives A099777. %Y A363132 Taking maximum instead of mean and including odd indices gives A118096. %Y A363132 For length instead of mean and including odd indices we have A237757. %Y A363132 For (maximum) = 2*(mean) see A361851, A361852, A361853, A361854, A361855. %Y A363132 For median instead of mean we have A361861. %Y A363132 These partitions have ranks A363133. %Y A363132 For maximum instead of minimum we have A363218. %Y A363132 For median instead of minimum we have A363224. %Y A363132 A000041 counts integer partitions, strict A000009. %Y A363132 A008284 counts partitions by length, A058398 by mean. %Y A363132 A051293 counts subsets with integer mean. %Y A363132 A067538 counts partitions with integer mean. %Y A363132 A268192 counts partitions by complement size, ranks A326844. %Y A363132 Cf. A053263, A111907, A237753, A237755, A237824, A327482, A349156, A361906, A361907, A363134. %K A363132 nonn %O A363132 0,4 %A A363132 _Gus Wiseman_, May 23 2023 %E A363132 a(31)-a(46) from _Chai Wah Wu_, Sep 21 2023